Incompatibilité des mesures de la constante de Hubble pour z<1 et z>>1. Astrophysique vs Cosmologie?(7/06/22)

Introduction

Un point, qui peut être structurellement intéressant de considérer concernant les mesures qui posent problème est le suivant.

D’une part, pour les mesures à z< 1, cette constante est évaluée en utilisant un phénomène astrophysique, par exemple, le fait que la luminosité intrinsèque (absolue) des supernovas est réputée constante, ce qui en fait des « chandelles standards », on utilise alors la distance de luminosité (une observable) et le décalage spectral (une autre observable) pour évaluer cette constante.

D’autre part on évalue cette constante en utilisant un phénomène cosmologique (le rayonnement de fond cosmologique: RFC ou CMB en anglais) dont, par analyse de la répartition des inhomogénéités et leur propagation dans le plasma primordial on déduit une taille (physique) de l’univers au moment du découplage (z =1089). Ceci permet alors d’utiliser la distance angulaire puisque l’analyse du RFC donne son « diamètre angulaire » par le premier pic de la transformée de Fourier spatiale. Avec cette distance angulaire et le décalage spectral on peut calculer la constante de Hubble.

Indépendamment d’éventuelles erreurs dans les mesures , le fait que d’un côté c’est la mesure d’un phénomène astrophysique (les SN1A,par exemple) et de l’autre d’un phénomène cosmologique (le RFC dont on déduit la taille de l’univers), n’est-il pas une piste pour expliquer cette incompatibilité?

Cohérence entre les mesures astrophysiques et cosmologiques?

La relativité générale stipule que l’univers est totalement déterminé par la nature physique et répartition des ses éléments « astrophysiques », en vertu du principe de Mach, principe qui a inspiré Einstein dans la construction de sa théorie. En particulier il justifiait la nature de l’inertie par l’interaction gravitationnelle entre toutes les masses de l’univers.

Ceci invoque implicitement la gravitation modélisée géométriquement par une variété en relativité générale. Notons que le modèle géométrique d’un objet n’est pas l’objet qui est de nature physique (il ne sont pas de même nature), mais illustre sa phénoménologie.

En particulier le modèle géométrique de la relativité générale décrit de manière très élégante (non linéaire) la dynamique (ce qui intéresse le physicien) des objets dans le système défini par la géométrie globale. Ceci implique -t-il que les phénomènes astrophysiques sont cohérents (conduisent aux mêmes résultats) avec les phénomènes cosmologiques. Par construction, la réponse de la relativité est positive.

Mais peut-on le vérifier expérimentalement? Ce n’est pas si simple, car les modèles déduits de la théorie et de l’expérience (la théorie ne définit pas la constitution astrophysique de l’univers, c’est une donnée expérimentale, elle définit le système (ici l’univers) correspondant à ces données. Il se trouve que dans les univers résultant de l’application de cette méthode, on est amené à supposer de la matière noire et de l’énergie noire (le tout à hauteur de 95%), de nature inconnue pour proposer des solutions de la relativité générale satisfaisant aux observations.

Ceci peut être une piste de réflexion pour comprendre les incompatibilités entre les mesures astrophysiques et cosmologiques.

L’inhomogénéité peut-elle être invoquée pour expliquer l’incompatibilité ?

Indépendamment de l’argumentaire développé au paragraphe précédent, il faut rappeler que l’homogénéité et l’isotropie supposée de l’univers, (principe copernicien, mais aussi hypothèse simplificatrice permettant d’obtenir une solution analytique) n’est valable qu’à l’échelle de l’univers) mais que localement (à l’échelle cosmologique z<1), au niveau des lois, ceci ne serait pas totalement vérifié (de petites disparités pourraient exister) !

Les observations et simulations montrent, qu’en fait, même à des échelles considérables la matière est concentrée sur les filaments et est loin d’être parfaitement homogène et isotrope (structure en « éponge).

Par exemple nous pourrions être dans une bulle locale (taille z <1) de sur-densité ou de sous-densité, ce qui, selon les équations, impliquerait une différence de la valeur de la constante de Hubble avec celle calculée à une échelle beaucoup plus grande.

D’une part, une mesure de la constante de Hubble dans la bulle (z<1) où nous serions, ce qui est effectif pour nous et d’autre part, une mesure de la constante de Hubble , pour l’univers homogène et isotrope (z>>1).

Notons qu’un autre observateur, à l’extérieur de la bulle, dans une région où l’homogénéité et l’isotropie, avec les paramètres de l’univers, seraient respectées, obtiendrait les mêmes résultats avec les mesures astrophysique et cosmologique !

Dans cette hypothèse la relativité générale ne serait pas en cause, ce serait une approximation abusive des paramètres qu’il faudrait invoquer.

Ainsi les deux mesures seraient « correctes » mais se rapporteraient à deux phénomènes différents.

Le document ci dessous à télécharger résume l’approche standard pour traiter ce problème, on y trouvera, entre autres, la définition des termes employés.