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Paul Langevin (CRAS of 07.11.1921 "On the theory of relativity and the experience of Mr. Sagnac") 

meets the concerns of some of his colleagues from the Academy of Sciences who wondered if the 

experience of Sagnac2, does not invalidate special relativity (stipulating that one cannot detect the 

movement of an inertial system by performing internal experiences in the system)3, since this 

experience can detect rotation and secondly they wondered what relativity predicts for this 

experience. 

 

Instead of using Lorentz transformations between local infinitesimal galilean frames, Paul Langevin 

will propose a modern geometric resolution of the problem by using the relativistic metric, like in 

general relativity even though it is not a problem of general relativity 4. To show that the first order 

relativistic solution converges with the Newtonian solution, P. Langevin  will assume that the 

tangential speed is very small compared to that of light (1 ± ω ²r²/c² ≈ 1). 

 

Langevin also points out that this experience, which has a result not null at first order is less 

discriminating for validating the different theories than that of Michelson which is an experience at  

second order. 

 

We keep the principle of his method, but by generalizing it and by using polar coordinates more 

convenient for this problem than the Cartesian coordinates he uses in his demonstration. 

 

The result at first order will be found by the same approximation as him, but deriving from the general 

result. 

 

Minkowski's metric associated with the global frame (R0), external to the instrument: 

  

ds² = c²dt² -r²dΦ²  [1] 

 

Metric on the local frame (R1) in ω angular velocity co-rotation associated with the instrument: 

 

ds² = (c²-ω ²r²) dt² - 2ω .r²dt.(dφ) – r².(dφ)²  [2] 

 

Because:     (Φ) = (φ) + ω .t 

 

Note that the coordinate t is the same in [1] and [2].  In [1], t is the proper time of a static observer. 

 

For a photon ds² = 0, therefore [2] becomes: 

 

(c²-ω ²r²) dt² - 2ωr²dt.dφ – r²dφ²= 0  [3] 

 

We consider [3] as a quadratic equation in dt. This gives for the 2 roots: 
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2Sagnac uses a rotating device which split a light beam in two light beams of opposite direction. A set of mirrors 

recombines the two beams to an interferometer for detecting motion. 
3A rotating system is not inertial. 
4 And moreover it is not a problem of special relativity as defined by Einstein in his article of 1905 associated to the 
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dt = (dφ) [(ωr²/c²)  +/-   (r/c)] / (1 - ω ²r²/c²)  [4] 

 

One of the roots is relative to the co-rotating photon and the other to the counter-rotating-photon. 

 

Integration5 of φ, from 0 to 2π, where A = π.r² is the area of the disk and L= 2πr  is the perimeter of 

the disk, yields: 

 

t = [(2πωr²)/c² +/- L/c]/ (1 - ω ²r²/c²) =  [(2ωA)/c² +/- L/c] / (1- ω ²r²/c²)  [5] 

 

t is the time coordinate of the metric, which is also the proper time of the "static external" observer 

in the R0 frame. This is what an outside observer would see about the rotating instrument. 

 

As the instrument (interferometer) is on the rotating platform (experience internal to the system),we 

have to take into account the proper time, τ, of the (virtual) observer, attached to the rotating frame, 

for the measurement. With φ = constant, [2] becomes: 

 

dτ ² = ds²/c²  = (1 - ω ²r²/c²) dt²  [6] 

 

 By integrating dτ = dt (1 - ω²r²/c²)1/2, we get: 

 

τ = t (1 - ω ²r²/c²)1/2     [7] 

Plugging in [5] 

τ = [(2ωA)/c² +/- L/c] / (1- ω²r²/c²)1/2  [8] 

 

 

Therefore the difference Δτ between the travel time τ1 of a co-rotating photon and τ2  the travel time 

of a  counter-rotating  photon in the frame (R1) measured on the rotating platform is: 

 

 

 |τ1 -τ2 | = Δτ = [(4ωA)/c²] / (1 - ω ²r²/c²)1/2 

 

 

This is what  observes, (measured with a clock or by observing the interference fringes), an observer 

on the rotating instrument. 

 

By neglecting ω ²r²/c² << 1, we obtain the result given by Newtonian mechanics: 

 

Δτ1st = [(4ωA)/c²] 

 

This is the result of the calculation made by Paul Langevin who considered this first order 

approximation early on in his article which is identical to that of the Newtonian mechanics. 

 

 
5The integration constant can be ignored as it is eliminated in the operation computing the time difference. 


