
 Special Relativity:  an astonishing demo of Lorentz equations using 

the principle of relativity only.[1],[2]  

Introduction 

 In his 1905 paper, for deriving Lorentz transformations, Einstein set 2 postulates.  

1- Principle of relativity:  

All inertial systems (Galilean reference frames) are equivalent. It is a total departure from the 

classical conception which postulated an absolute space, (ether) which was the reference.  

In Einstein's conception, as there is no absolute Galilean frame of reference, we can no longer 

speak of the "absolute" velocity of a Galilean reference frame. We can only define a relative 

velocity between them.  

 

2- The velocity of light is the same in all Galilean inertial systems.  

 

3- First consequences  

These considerations, which seem “a priori” almost "trivial", will have serious consequences. 

Space and time, although considered as immediate data of our consciousness, are no longer the 

fundamental entities of a physical nature.  

As Minkowski said, space and time are no more than shadows of a new fundamental entity: the 

spacetime.  

We demonstrate that the principle of relativity, alone, allows to get the full demonstration of 

Lorentz equation. Therefore, the second principle is accessory as it just specifies the value of a 

constant according experimental data. 

 

 

[1] Reference J.M Levy-Leblond. https://dspace.ist.utl.pt/bitstream/2295/52597/1/Levy-Le-

blond_(76).pdf.) and some others, see for instance (http://www.tree-

man9621.com/PDF%20LEVY-LEBLOND%20DID%20NOT%20CREATE%20LO-

RENTZ%20TRANSFORMATIONS.pdf) 

[2] The demonstration is made for a one space dimension. It can be extended to full space.  

  

https://vous-avez-dit-bigbang.fr/?p=1997#_ftnref1
https://vous-avez-dit-bigbang.fr/?p=1997#_ftnref2


Annex 

The astonishing heuristic power of the relativity first postulate 

Starting with using the general constraints of the symmetry of the problem 

Let us describe the Lorentz relation between 2 axis Ox and O'x' sliding one on the other with a 

constant velocity V  

---------------------------------O’----------------------------->x’                               

OO’=V 

---------------------------------O------------------------------ >x  

 

To get a perfect symmetry between the two frames let us inverse the direction of the O'x ' axis 

x'<------------------------------O’---------------------------------- 

----------------------------------O----------------------------------> x 

The homogeneity of the problem implies a linear transformation and if we select t = t' = 0 at O 

and at O' at crossing time, the transformations (x, t) → (x', t') and (x', t')→ (x, t), listed below, 

will include 8 constants labelled from A to D' 

 

(4)                                x’ = Ax + Bt                     t’ = Cx + Dt 

                                    x = A’x’ + B’t’                   t = C’x’ + D’t’ 

 

The relativity principle and the symmetry imply that:  

(5)             A = A’           B = B’          C = C’            D = D’ 

 

Moreover, in O', x' = 0 and x = Vt, therefore x' = Ax + Bt implies AV + B = 0, as well as  x = 

Ax' + Bt' et t = Cx' + Dt' imply B = DV, thus D = -A. 

 

Finally, for consistency 

(6)          x = Ax’ + Bt’ = A(Ax + Bt) + B(Cx + Dt) = (D’ + CDV)X t = Cx’ + Dt’ = C(Ax + 

Bt) + D(Cx + Dt) ='(D’ + CDV) t 

Therefore, D² + CDV = 1, i.e:  𝐶 =
1−𝐷2

𝐷𝑉
 

 

The transformation (x, t) → (x’, t’) becomes, then : 

(7)             x’ = -Dx + DVt                   𝒕′ =
1−𝑫2

𝑫𝑽
𝒙 + 𝑫𝒕 

 

The sole parameter left unknown, D, is a function of the velocity V. This can be find by 

comparing the relations involving several frames of different velocities.  

 



Using the group structure of the Lorentz transformations 

Going back to  O'x' , now let us consider 3 axis  Ox, O'x' et O"x" of same orientation 
  --------------------------- O’’-------------------------------------->x’’  

                                             OO’’=V’’t,     O’O  =V’t’    ‘                                                           

                                                 

------------------------------O’-------------------------------------->x’ 

                                                       OO’ = Vt 

-------------------------------O--------------------------------------->x 

 

Relation (7) becomes, with the opposite sign, for x' 

 

(8)             x’ = D(x – Vt)                   𝒕′ =
1−𝑫2

𝑫𝑽
𝒙 + 𝑫𝒕 

 

And the same for D' for r V' and D" for V "(this new D' is independent of that of(4)-(5), which 

is no longer used after (5)): 

(9)                    x’’= D'(x’- V’t’),    t’’ = [(l – D’²) /(D’V’)]x’ + D’t’  

(10)                  x’’= D’’(x – V’’t)    t’’ = [(l – D’’²) / (D’’V’’)]x + D’’t 

 

Let us eliminate x' and t' in (9) by using (8), we get another expression of (10) 

Identifying (10) and (11) give four relations as follow 

 

(12)               D’’ = DD’ + [D’V'(D²-1) / (DV)] 

(13)              D’’V’’ = DD'(V + V’) 

(14)              (1 – D’’² ) / D’’V’’= [(D – DD’²) /(D’V’)] + [(D’- D²D’) /( DV)] 

(15)               D’’= DD’ + [DV(D’²- 1) / (D’V’)] 

  

Thus, with (12) et (15): 

 

16)                D’’- DD’ = D’V'(D²- 1) / (DV) = DV(D’² – 1) /( D’V’) 

 

A constant will emerge from this relation 

 
The last equation allows to defines the parameter K such as: 

 

(17)               K=D² V² / (D ²-1) = D’²V’² / (D’² – 1) 

 



This parameter K has the same value for two different arbitrary velocities with their associated 

parameter D),  

Therefore, K is a constant, not depending of the relative velocity between the Galilean 

frames.  As when V = 0 we get x = x' and t = t', therefore   D = 1 in (8), we must select 

the positive of (17) 

 

(18)                                     𝑫 =
1

√1−
𝑽2

𝑲

 

With (8) we get the transformation (x, t)→(x', t) and Poincaré extend it easily to the general 

transformation (x, y, z, t) → (x', y', z', t'). 

 

(19)    𝑥′ =
𝑥−𝑉𝑡

√1−
𝑉2

𝐾

, 𝑦′ = 𝑦, 𝑧′ = 𝑧  𝑡′ =
𝒕−

𝑽𝒙

𝒌

√1−
𝑽2

𝑲

 

 

Which value for the constant K?  

 It would provide (1) if it is infinite corresponding to the Galilean mechanics and a 

Lorentz transformation if K = c².  Obviously these 2 transformations are not very different when 

V <<c.  

The constant K cannot be negative (this would allow backward time flow) and its square 

root appears as an upper limit for the relative velocity between 2 Galilean frames.  

This is confirmed by the square root (1-V²/K)1/2 and by a law of combination of velocities 

deducted from (12) and (13): 

 

(19)   V’’ = (V+V’) / [1 + (VV’/ K)]       by setting  K = k² 

(19)   (k-V’’)/(k+V’’ ) = [(k-V)/(k+V)].[(k-V’) / (k+v’)]      

 

Therefore |V | and |V’| < k imply |V’’ | < k. 

 

Thus V  and V'  < k implies V"  < k. 

 

Poincaré and Lorentz selected K = c², in accordance with the constancy the light velocity 

and with the conservation of the Maxwell’s equations in Galilean frames.   

  

End of' annex 

  

 


