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Introduction 

 

Currently, this problem of incompatibility, between the values of H0 at z >> 1 (that using 

the CMB (Cosmological Microwave Background), giving a value of H0 of about 67.27 ± 0.6 

km / s / Mpc, and those of many methods based on observations at z <1 (SN1A, Cepheids, etc.) 

giving a value of H0 of about 73.52 ± 1.62 km / s / Mpc, seems to question the standard 

cosmological model.  

At first, one questioned the accuracy of the observations, but these values deviate by more 

than 4 σ from their probabilistic diagram so, as so many measurements have been made and 

verified, this hypothesis is less and less credible.  

Today, we are in expectation, fearing for some and hoping for others, a questioning of the 

standard model and therefore the theory of general relativity which supports modern 

cosmology. The history of science teaches us that no theory is definitive, but currently, there is 

not any so effective alternative theories to replace it.  

What a theory physically predicts depends on the parameters associated with it and the 

assumptions made. Let us recall that the assumptions of homogeneity and isotropy of the 

universe are drastic approximations which, even on a large scale (matter is gathered in 

filamentous structures with gigantic voids), are far from being really satisfied.  

Inhomogeneous and anisotropic models of universes are studied, without too much 

success so far. We also know that 95% of what generates the dynamics of the universe (dark 

matter and dark energy) are of unknown nature, despite important research.  

On the other hand, the inflation paradigm, which solves a few problems, still looks as an 

ad hoc theory waiting for some experimental evidences.  

. However, before proclaiming the fall of the cosmological standard model, it is worth 

considering whether it is not its parameters that are wrong.  

Here, after a presentation of the problem, on an arbitrary example, we show how the value 

of H0 depends on the cosmological parameters. In this document, we assume that the 

fundamental notions of cosmology are known (Robertson-Walker metric, Friedman-Lemaître 

equation, density parameters Ωi, cosmological redshift z, luminosity distance dL, angular 

distance dA, the equation of state cosmological fluids, etc. 

 If not, and if necessary, see, for instance: http://www.astro.ucla.edu/~wright/cosmolog.htm 

Brief survey of measurement methods used to determine H0. 

 

http://www.astro.ucla.edu/~wright/cosmolog.htm


3 
 

An essential difference in these methods is the value of the redshift of the observed and 

measured phenomenon.  

Method like SN1A, considered as a standard candle (light source whose intrinsic 

luminosity is known), for example, where z <1, uses the distance of luminosity dL deduced from 

an observable which is the measure of the power of light of the object considered (by a device 

associated with the telescope measuring the energy of the photon flow) that we will combine 

with the redshift z (measured by a spectrometer on the telescope), which is another observable 

of the object considered.  

This makes it possible to plot z(dL) curves for different values of z that we will compare 

with those predicted by the different models and to eliminate some of them and keep others as 

possible (best matching method). 

Which models are compatible with the experimental data? 

 

 

Figure 1: Selection method by best matching to experimental data. 

 On the diagram above, a set of measurement points for the observations of the redshift z 

has been represented by star, as a function of the luminosity distance dL. A dashed curve, 

connecting them, interpolates the experimental law z (dL). Each point must be associated with 

an error bar linked to the inaccuracy of the measurement. We have drawn 3 curves A, B, C 

corresponding to 3 different cosmological models. We see that for example the curve B is the 

most compatible with the experimental data. On the other hand, curves A and C are to be 

excluded. 

 It is this best fit between observations that will determine which models are compatible 

with the observations and exclude those that are too far from them, taking into account 
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measurement inaccuracies. Note that this diagram is approximate and only claims to illustrate 

the phenomenology described.  

Luminosity distance 

 In Euclidean space, the light power F (energy of light received per unit area and per unit 

of time) from an isotropic source (the Sun for example) of total luminosity L is equal to: 

𝐹 =
𝐿

4𝜋𝑟2
                                (1) 

where r is the distance between the receiver and the source.  

This is simply explained by the fact that the flow is distributed over the surface of a sphere 

of radius r whose area is 4 π r². In a non-Euclidean space, other phenomena must be taken into 

account. 

 In an expanding space, as described by the Robertson -Walker metric, the emitted 

photons will be redshifted by the expansion therefore their energy will be divided by 

1 + 𝑧 =
𝑎(𝑡0)

𝑎(𝑡𝑒)
                                  (2) 

Where z is the observed redshift of the source and a (t) are the scale factors at the emission 

time of the photon at te and at the reception of the photon t0, (now). A second phenomenon also 

occurs, the time interval between photons increases all along the geodesic, due to the expansion 

of space, by a factor also equal to (1 + z), this reduces the received light power.  

We will define the luminosity distance dL, by the relation:  

𝐹 =
𝐿

4𝜋𝑟2. 𝑎(𝑡0)2(1 + 𝑧)2
=

𝐿

4𝜋𝑑𝐿
2            (3) 

Which gives : 

𝑑𝐿 = 𝑎(𝑡0)𝑟(1 + 𝑧)                                        (4) 

Note that in equation (3), we do not know r which is a coordinate, but dL is defined by (3) 

since L is a standard candle of known absolute luminosity and F is measured by the observer. 

Similarly, z is an observable (redshift of the object, measured by a spectrometer). 

 Let us recall that it is by the diagrams representing the function z(dL) that the acceleration 

of the expansion was detected (1998) and that it allowed, as such, to reintroduce the 

cosmological constant in the standard model, by using the method of the best fit to the 

experimental data as described in Figure 1, 
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In addition to discriminating between different cosmological models, the luminosity distance, 

a simplified expression of which is given by equation (5) below, shows that this luminosity 

distance depends on the Hubble constant H0.   

 

It can therefore be used to estimate the value of the Hubble constant. Its general expression is 

quite tricky, it is simplified if the spatial curvature of the universe is (about) zero, (Ωk = 0). 

 Let’s make this assumption, consistent with the current assumption on spatial curvature.  

This luminosity distance dL from the object located at a spectral shift z * is given by: 1 

𝑑𝐿 =  
𝑐(1 + 𝑧)

𝐻0
 ∫

𝑑𝑧

√ Ω𝑟𝑎𝑑(1 + 𝑧)4  + Ω𝑚(1 + 𝑧)3 + ΩΛ

𝑧∗

0

          𝑒𝑞 5 

Note that the expansion parameter is not t but z, an observable. This required a transformation 

which is described in the appendix. This equation includes H0, the value of H for z = 0, which 

is a constant in equation 5 (therefore can be outside of the integral). H is linked to H0 by the 

formula:  

𝐻 = 𝐻0√( Ω𝑟𝑎𝑑(1 + 𝑧)4  + Ω𝑚(1 + 𝑧)3 + ΩΛ)               𝑒𝑞. 6 

 
1 Often, one, for simplifying equations, set c = 1. When necessary or useful, one can resume c in an 

equation by consistency of dimensional analysis. 
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Planck and WMAP calculated the value of H0 by using the Fourier analysis in spherical waves 

of the inhomogeneities of the CMB which provides the position of the first peak which is an 

angle which is the value of the angular view size of the sonic horizon. The size of this 

horizon, in turn, will be calculated by the distance traveled by sonic waves up to the time of 

baryons/photon decoupling, this depending of the sonic velocity of these waves in the plasma. 

These two data will provide the angular distance dA, whose general definition is the distance 

associated to the viewed angle θ of an object of known size.2 

 

 

 Figure 2: Representation of the temperature of the CMB in "false colors".  

The image corresponds to the complete celestial sphere, the Planck Satellite being at the 

Lagrange L2 point, 1.5 million km from Earth. All the information is contained in this image.  

 

Figure 3: Result of the 2D Fourier transform of the RFC. 

 
2 As usually θ is a small angle one set sin(θ) = θ.  
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This transform extracts the proportion of patterns associated with each size identified by the 

value of the multipole or the associated angle.  

The plasma being an elastic medium, the inhomogeneities generate acoustic waves, therefore 

the peaks which correspond to the most intense modes (mainly the fundamental mode, 

corroborated by its harmonics). This defines the size of the sonic horizon in the plasma. 

 There is a simple relationship between dL and dA: 

𝑑𝐴 =
𝑑𝐿

(1 + 𝑧)2
  =     

𝑐

(1 + 𝑧)𝐻0 
 ∫

𝑑𝑧

√ Ω𝑟𝑎𝑑(1 + 𝑧)4  + Ω𝑚(1 + 𝑧)3 + ΩΛ

𝑧∗

0

       𝑒𝑞 7 

 

dA, therefore, also depends on H0. Let us suppose, for example, that the cosmological constant, 

instead of being constant, depends on z (and therefore on t). Under these conditions it is 

necessary to introduce a factor f (z) associated with the cosmological constant λ, which will 

have a significant effect for z >> 1, while keeping the value for z = 0. This will introduce a 

difference of phenomenology.  

𝑑𝐴 =  
𝑐

(1 + 𝑧)𝐻0 
 ∫

𝑑𝑧

√ Ω𝑟𝑎𝑑(1 + 𝑧)4  + Ω𝑚(1 + 𝑧)3 + 𝑓(𝑧)ΩΛ

     𝑒𝑞 8
𝑧∗

0

  

 

The law that we are going to propose is an example and does not claim any physical character, 

this will aim to show that the effect can be significant.  

In the equation (8), if the integral increases, since the experimental value of dA is a given 

experimental data 3, the factor H0, must increase for keeping dA constant. 

The exact impact of this correction is likely quite complex, but an empirical example modifying 

the vacuum equation of state of the cosmological constant is given as an example to illustrate 

the mechanism.  

Numerical example 

We are interested in the case z >> 1 (method using the results of Planck which are more 

recent than those of WMAP). 

 Ωm = 0.306 

 Ωrad = 0.00009236  

ΩΛ = 0.694 

 
3 In fact, dA is deduced from the analysis of CMB and cosmological parameters. The size of the "sonic" 

horizon is deduced from the time until decoupling and from the velocity of sound (velocity of propagation of 

inhomogeneities in a photon-baryon plasma) and the angle of sight is given by the Fourier transform of the CMB 

(position of the first peak). 
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 Let's write the part of the equation that describes the influence of H0 with these 

conventions and values:  

a) Case where the cosmological constant does not vary 

1

𝐻0
∫

𝑑𝑧

√ 0,00009236(1 + 𝑧)4  + 0,306(1 + 𝑧)3 + 0,694

1089

0

       𝑒𝑞 9 

 

b) Case where the cosmological is no longer constant and is a function of z while keeping 

its value for z = 0. 

Let us say, for example 

𝑓(𝑧)  =  10−𝑧10−3

  

which satisfies these constraints. 

1

𝐻0
∫

𝑑𝑧

√ 0,00009236(1 + 𝑧)4  + 0,306(1 + 𝑧)3 + (0,694)10−[𝑧(10−3)]

   𝑒𝑞 10
1089

0

 

a) In this case, the value of the integral given by mathematica's "NIntegrate" (numerical 

integration) function is : 3.15393 

     b) In this case, the result given by mathematica by the function NIntegrate is : 3.43586 

 

Deduced value of H0 

 

Let us Recall the equation that governs these parameters 

𝑑𝐴 =  
𝑐

(1 + 𝑧)𝐻0 
 ∫

𝑑𝑧

√ Ω𝑟𝑎𝑑(1 + 𝑧)4  + Ω𝑚(1 + 𝑧)3 + 𝑓(𝑧). ΩΛ

𝑧∗

0

 

 

We see that if we know dA and the value of the integral, since we know the redshift z and 

as c is the velocity of light, we can deduce H0. If the value of the integral increases the value of 

H0 (which is the denominator) must also increase for the same value of dA. 

 If the equation with the standard parameters gives: 

 

67.27 km / s / Mpc, 

 

then with the varying cosmological constant we will obtain: 

𝐻0

67.27
=

3.43586

3.1531
  → 𝐻0 ≈ 73.30   𝑘𝑚/𝑠/𝑀𝑝𝑐 
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This result would be compatible with the value given by the SN1A but, let us recall that the 

proposed modification is purely arbitrary and has no physical character.  

 

How do we know dA? 

Less us remember that by definition: 

dA. θ = ds 

dA is the angular distance where we see the size ds of the sonic horizon, under the angle θ 

which is deduced from the position of the first peak in figure 3, which is equal to: 

θ = 0.0104 radian ≈ 0.6 °, 

 in this case. The size of the object ds, the sonic horizon, which is the maximum limit for 

the propagation of sonic waves in the plasma from the origin 

t = 0 + up to t = 380,000 years 

up to the photon-matter decoupling, can be deduced from others parameters of the CMB, 

characterizing the plasma, such as the ratio between the baryons and the photons which are in 

thermal equilibrium and which determine the sonic speed (velocity of propagation of 

inhomogeneities in the plasma)4.  

When we, know the size of the horizon and the angle at which we see it, this allows us to 

define the angular distance dA and consequently H0 since we then know all the other parameters.  

 

How do we know dA?  

By setting d = ds for marking that it is a sonic horizon, let us recall that: 

 dA. θ = ds      eq 12  

dA is the angular distance where we see, in a curved spacetime, the size ds of the sonic horizon, 

under the angle θ, which is deduced from the position of the first peak as shown in figure 3. 

 In our universe θ = 0.0104 radian ≈ 0.6°.  

 

The size of the object ds, which is the sonic horizon, is the maximum limit of propagation of 

the sonic waves in the plasma from the origin t = 0+ up to t = 372000 5  years (at photon-matter 

decoupling). It is deduced from other parameters of the CMB, characterizing the plasma, such 

 
4 The equations giving the size of the sonic horizon are quite tricky, see for instance: 

Ref A  https://ned.ipac.caltech.edu/level5/Sept02/Reid/Reid5_2.html,, chapter 5.2, acoustic peaks and the 

cosmological parameters 

. See also .Ref B : https://physics.stackexchange.com/questions/450517/how-did-the-planck-study-calculate-the-

angular-size-of-the-sound-horizon for an interesting contribution, partly related here.… 
5 You may also find t = 380000 years in some papers. 

https://ned.ipac.caltech.edu/level5/Sept02/Reid/Reid5_2.html
https://physics.stackexchange.com/questions/450517/how-did-the-planck-study-calculate-the-angular-size-of-the-sound-horizon
https://physics.stackexchange.com/questions/450517/how-did-the-planck-study-calculate-the-angular-size-of-the-sound-horizon
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as the ratio between the baryons and the photons which are at thermal equilibrium and which 

determine the sonic speed (speed of propagation of inhomogeneities in the plasma).  

Let us start by recalling some topics for understanding how ds was calculated, from the data on 

the cosmological parameters of the CMB, collected by WMAP and Planck, for instance.  

 

Sonic speed of propagation of inhomogeneities in a baryon/photon plasma  

 

The speed of propagation (celerity) of a disturbance (inhomogeneity of the plasma) in a plasma 

is denoted cs.  

Calculation of the sonic horizon in the co-moving reference frame 

𝑑𝑠 = ∫  𝑐𝑠 𝑑𝑡   
𝑡𝐶𝑀𝐵

0+

 = ∫  
𝑐. 𝑑𝑡

√3(1 +
3𝜌𝐵(1 + 𝑧)3 
4𝜌𝛾(1 + 𝑧)4 )

    ~ ∫  
𝑐. 𝑑𝑡

√3
   

𝑡𝐶𝑀𝐵

0+

 𝑒𝑞 13
𝑡𝐶𝑀𝐵

0+

 

 

 In the equation (13) whose comparison between the 2nd term and the 3rd shows the value of 

cs. The size ds is given by integrating the function from the time t = 0+ up to the time of the 

decoupling tCMB, of this expression, where ρB is the baryon density and ργ the photon density, 

parameters which take into account the relative number of baryons compared to photons, but 

also their individual energy, for example expressed in eV. The last term of equation (13) is an 

approximation when ργ >> ρB . 

 

 

 

 

It is known that baryons own energy is about 1 GeV, for photons it depends on the 

"temperature" of the universe. Thus, upon decoupling, the photons have an energy of about 

0.26 eV, but since there are one billion per baryon, the order of magnitude of the ratio is fairly 

not too far of 1.  

 

On the other hand, at t = 1 second, the energy average photon is 1 MeV so, per their 

overwhelming number, the fraction in the square root tends to zero, which simplifies the 

equation.  
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In this period from t = 0+ to tCMB= 372,000 years there is a first phase dominated by radiation 

then a second phase where matter (baryons) dominates. The turning point is around t = 60,000 

years for z = 3000, at a temperature of 8000K.  

 

We see that, as in most of the time of the period the energy density of the photons is fairly 

higher than that of the baryons, the simplified formula can be used as a first approximation.  

 

It is simply calculated and for tCMB = 372,000 years we get: 

 

𝑑𝑠 = ∫  
𝑐. 𝑑𝑡

√3
 = 𝑡𝐶𝑀𝐵  

𝑐

√3
 ~ 0. 066 𝑀𝑝𝑐      𝑒𝑞 14

𝑡𝐶𝑀𝐵

0+

 

 

Of course, in the Planck collaboration, rigorous, more complex calculation prevailed. But 

here, as our goal is to show the principle of the calculation, the approximation makes it 

possible to illustrate it numerically.  

 

With these data ds = 0.066Mpc and θ = 0.0104 radian, in the co-moving reference frame, we 

gett: dA = ds/θ = 6.346 Mpc, i.e. about half of the calculation made by the Planck 

collaboration.  

 

The reason is that the equations above give the size in a co-moving reference frame but it 

must be taken into account that the universe is expanding.  

 

The effect of the expansion of the universe  

 

To take into account the fact that during the propagation of sonic waves the universe was 

expanding, we use the following equations:  

 

𝑑𝑠 = ∫
𝑐𝑠 𝑑𝑎

𝑎(𝑡)

𝑡𝐶𝑀𝐵

0

= ∫
𝑐𝑠𝑑𝑎

𝐻 𝑎2

𝑎𝐶𝑀𝐵

0

~
𝑐𝑠 

√Ω𝑚 𝐻0

∫
𝑑𝑧

(1 + 𝑧)
3

2⁄  
       𝑒𝑞 15    

∞

𝑧𝐶𝑀𝐵
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In this equation, proposed in reference B of note 5, we make the assumption of a universe 

dominated by matter at decoupling, cs is the assumed constant sonic speed, CMB the time of 

decoupling matter radiation, the other parameters have already been defined.  

We recall that da/dt = a.H. This is used to go from the first integral to the second. 

  

H ≈ H0 Ωm
1/2 (1+z)3/2 = H0 Ωm

1/2 a-3/2  

 

See equation (2) where, as we set a0 = 1, then (z+1) = a0/a = 1/a.  

This also means that dz = -da/a2, the "minus" sign implying the permutation of the integration 

limits of the last integral.  

Note that the last term of equation 15 is very approximate, because we assumed the constant 

speed cs which is not the case and also a universe dominated by matter, which is only true 

from z < 3000. The goal is to allow by a simple calculation to give orders of magnitude. 

 

We will give a more accurate version in a further paragraph.  

For the parameters of the problem and assuming that the sonic velocity is c.3-1/2, this gives:  

𝑑𝑠 =
2 𝑐

𝐻0√3Ω𝑚

(1 + 𝑧𝐶𝑀𝐵)
−1

2⁄        𝑒𝑞 16  

 

For H0 = 70km/s/Mpc, Ωm=0.3 and zCMB = 1090, this gives approximately 270 Mpc, which 

must be divided by (1+ zCMB) to insert it into the angular distance term of the calculation.  

 

This gives an angular diameter of 0.019 radians, already closer to the value given by the 

Planck collaboration.  

But if the speed of sound is lower then the scale decreases. Recall that the speed of sound is 

given by the equation: 

𝑐𝑠 =
𝑐

√3(1 + 3𝜌𝐵  /4𝜌𝛾)
       𝑒𝑞 17 

 

We see that the baryon to radiation ratio increases with time, in proportion to the factor a(t). 

At decoupling the ratio 3ρB /4ργ ≈ 1, which leads to: 

  

𝑐𝑠 (𝑡𝐶𝑀𝐵) =
𝑐

√6
       𝑒𝑞 18 
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This leads to a correction that decreases the size of the sonic horizon towards the size 

predicted by the Planck collaboration, which has treated the problem rigorously.  

 

This qualitative presentation, was aimed to focuses on showing the phenomena at work in this 

problem, because we feared that the mathematical complexity of the more rigorous solution 

would blur these phenomena for the layman.  

 

Figure 4: A representation of the angular distance calculation 

 

Knowing the size of the horizon and the angle under which we see it, this allows us to define 

the angular size dA and consequently H0 since we then know all the other parameters.  

 

Case where the propagation of inhomogeneities starts from the end of inflation.  

 

Here, it is assumed that inhomogeneities of macroscopic size result from inflation and that it 

is not relevant to consider them before its end. Let's start by giving a more accurate version of 

the last term of equation 15. 

𝑑𝑠 =
1

𝐻0
∫

𝑐.

√3(1 +
3𝜌𝐵

4(1 + 𝑧)𝜌𝛾
)

𝑧𝐼𝑁𝐹

𝑧𝐶𝑀𝐵

 
𝑑𝑧

√Ω𝑚(1 + 𝑧)3 + Ω𝛾(1 + 𝑧)4
  𝑒𝑞 19 

 

In this equation we assumed that the universe is without curvature (Ωk =0), that the 

cosmological constant was negligible during this era, taking into account only matter and 

radiation.  
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The integration is done from the CMB at the end of inflation.  

Note also that in the equation we have the density of the baryons which intervenes in the 

plasma (dark matter does not intervene because it does not couple with the radiation) but also 

the density parameter of the total matter (baryons + matter black).  

 

We should not confuse these 2 parameters. 

 

How to evaluate the baryon/photon energy density ratio?  

 

We know that there are about 1 billion photons per baryon. The energy of baryons is mainly 

their rest mass energy, around 1 GeV, their kinetic energy remains low compared to that, and 

when approaching very high energy > 1 GeV where they begin to be relativistic, photons in 

overwhelming numbers are also at this energy, which means that the baryon energy / photon 

energy ratio remains very low.  

 

Which numeric values for the parameters  

 

The equilibrium point between the radiative era and the material era (which includes dark 

matter) is around z = 3000 where the temperature is around 8000°K, i.e. 0.75 eV for photons.  

 

In equation 19 let us assume that for z = 3000 

3

4(3000)

𝜌𝐵

𝜌𝛾
~1 →

𝜌𝐵

𝜌𝛾
 ~4000     𝑒𝑞 20 

 

 Substitute this result, together with the known values of the Ω, into equation 19 

 

𝑑𝑠 =
𝑐

𝐻0
∫

1

√3(1 +
3000

(1 + 𝑧)
)

𝑧300000

𝑧𝐶𝑀𝐵

 
𝑑𝑧

√0.3(1 + 𝑧)3 + 0.0000924(1 + 𝑧)4
  𝑒𝑞 21 

 

 This integral can be integrated from z = 1090 to z = 300,000.  

Beyond a value of z = 300,000 for example, this ratio will be considered to be zero, which 

simplifies the calculations as we use the simplified form, for z > 300,000 and below a more 

complex form that we will integrate.  
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𝑑𝑠2 =
𝑐

𝐻0
∫

𝑑𝑧. (1 + 𝑧)−2

√3 ∗ 0.0000924

𝑧𝐼𝑁𝐹

𝑧300 000

= [
𝑐 (1 + 𝑧)−1

𝐻0 (0.01665)
] 𝑧=𝑖𝑛𝑓𝑙𝑎𝑡

𝑧=300000𝑒𝑞 22 

 

What about the effect of inflation in the calculation of the sonic horizon?  

 

In this analysis, it appears that the inflationary phase, whose expansion equations are different 

where one can wonder what the state of the plasma was, is not taken into account. Is it because 

it leads to unreasonable complexity or because it was assumed that their influence would be 

negligible? Yet inflation induces a significant difference in phenomenology.  

 

Reminder of assumptions 

 

 The equations presented invoke the cosmological time t (in Robertson-Walker metric) and the 

scale factor a(t), which are related by relations a(t) = kt1/2 for the photon era (dominated by 

photon energy in the plasma) or baryonic a(t) = Kt2/3, for the era dominated by matter (from t = 

approximately 60,000 years). The proposed equations giving the sonic velocity take into 

account a transition which is gradual. Under these assumptions, these equations are assumed to 

be valid from t = 0+ where a(t) = 0+ to t = tCMB where a(tCMB) = a(t0) /1089, where t0 is "today".  

 

Phenomenology of inflation  

 

The inflation period is characterized by a function of the scale factor a(t) of the type a(t) = eH.t, 

where H is the value of the Hubble constant at the start of inflation which remains constant 

throughout the period of inflation. Generally located between tbeginning = 10-30s and tend =10-28 s 

(in cosmological time), which means that this phase lasted 100 times the age of the universe at 

the beginning of the phase.  

 

The expansion (on a space dimension) is therefore proportional to eH.100. As e100 ≈ 1043 we see 

that the expansion has been gigantic. If we compare this value to that which would result from 

the expansion without inflation which, in a universe dominated by radiation, follows a law 

proportional to t1/2, this would have given an expansion of 10.  
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The difference is enormous. Then, if we calculate the variation of a(t), between the end of 

inflation t = 10-28 s and the decoupling (t = 372,000 years = 1.173 1013 s) by approximating 

using the formula a(t) = k. t1/2, we obtain approximately a variation less than 10-21, i.e. 1022 

times smaller than that of inflation. Even if a(t) is tiny, can we neglect inflation in such 

circumstances, since the variation of a(t) was almost entirely the work of inflation?  

Moreover, it was during the period of inflation that the macroscopic inhomogeneities 

developed, another parameter that must be considered, but again with caution, because this 

process (dilation of quantum fluctuations) took place throughout this inflation phase giving a 

nearly scale-invariant power spectrum.  

If this last remark would lead to consider the phenomenon of propagation of inhomogeneities 

in the plasma from the end of inflation t = 10-28 s, or at least from a certain stage in the inflation 

(before they existed only at the microscopic scale, even if it was in a very small universe), a 

calculation of the effect of inflation, on the phenomenon of propagation of inhomogeneities in 

a plasma, inflation which moreover had essential structural consequences on other phenomena, 

is welcome, taking into account the problem of incompatibility of the result of H0 given by this 

method with that for z < 1. 

Calculation during inflation  

 

We must calculate H at the end of inflation, As H is constant during inflation this will give its 

value. To do this, z must be calculated at the end of inflation. Knowing that at t = 60,000 years, 

z = 3000, let's calculate the variation of z until t = 10-28s. knowing that we are in the radiative 

era where a (t) = k.t1/2, (varies according to the square root of t). For t the variation is 60,000 

years (1.89x 1012 s), multiplied by 1028 = 1.89.1040. The value of z at the end of inflation is 

then: zinf = 3000 x1.37x 1020 = 4.1x 1023. Calculate H, at the end of inflation using equation 6 

for z = 4.1x 1023  

𝐻 = 𝐻0√( Ω𝑟𝑎𝑑(1 + 𝑧)4  + Ω𝑚(1 + 𝑧)3 + ΩΛ)     

 

𝐻 = 67,27√(0.00009246(4.1 1023)4  + 0.3(4.1 1023)3 + 0.694)  ~1.087  1047  

 

We will report this value in the simplified equation where cs is constant but where the expansion 

of the universe is given by a(t) = eHt which is the solution of the equation H = a'(t)/a(t) = H = 

constant.  
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The relation between z and a(t) is z+1 =a0 /a(t) = 1/a(t) by setting a0=1, because a0 is the 

scale factor today which is the reference. Therefore:  

 

𝑑𝑠−𝑖𝑛𝑓 = 𝑐 ∫
1.

√3

𝑡=100

𝑡=0

 
𝑑𝑡 

𝑎(𝑡)
= 𝑐 ∫

1.

√3

𝑡=100

𝑡=0

 
𝑑𝑡 

𝑒𝐻𝑡
= [

𝑐

√3
(
𝑒−𝐻𝑡

𝐻
) ]𝑡=10−30 

𝑡=10−28
 

 

In this equation we used the integral of e-Ht which is -e-Ht/H 

 

𝑑𝑠 =
𝑐

√3
 (

𝑒−𝐻.10−28

𝐻
) (1 − 𝑒100 ) =

𝑐

√3
 (

2.44 10−24

1.087 1047
) (1 − 𝑒−100 ) 

  

We replaced the expression of a(t) = eHt by its value (2.44 10-24) at the end of inflation (at 10-

28s). With the huge value of H at the time of inflation, and its presence in the negative 

exponential, this expression yields a negligible result. We have not solved the problem of 

incompatibility between measurements of the Hubble constant for z < 1 and those for z >> 1.6 

Conclusion  

When the theory in force (the standard model of cosmology) seems to be faulty, before 

abandoning it for another, assuming that there is, currently, one which is better (this is 

appreciated on the set of predictions that the theory makes), it must be ensured before that it is 

used correctly. 

 The case of cosmology is particular, insofar as, for the theory, drastic simplifying 

assumptions have been made (homogeneity and isotropy on a large scale), essentially to find 

analytical solutions! We know that this is highly approximate.  

History has shown that an experiment could make a theory falter, as the Michelson-

Morley experiment for mechanics which induced special relativity, and that of the black body 

for mechanics, which induced quantum mechanics. 

 For the problem of the Hubble constant, if we look at the existing “competing” theories, 

it is not obvious that there is currently a better one, and some (in particular to quantify gravity) 

are still under construction, and this despite the considerable research efforts that have been 

devoted to it. Of course, a theory is not a truth, it is not definitive, and history has shown how 

they could be improved, a task incumbent on physicists.  

 
6Let us stress that this document should be considered as an exercise No doubt that the Planck collaboration 

carefully analyzed the problem leaving little opportunity for  oblivion in such process.  
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This anomaly of the Hubble constant is finally perhaps an opportunity, because by the 

nature of the problem which it raises, (laws which seem to depend on z, differently from what 

one thought), like the examples mentioned previously, it can give us information for a lead 

towards a new approach.  

 

Appendix 

The Friedmann-Lemaître equation uses the Robertson-Walker’s metric whose coordinates 

are t, r, θ and φ. As we would like to use the parameter z (the redshift) in place of t, as expansion 

parameter, because z is an observable, we will calculate the Hubble constant defined in the 

Friedmann-Lemaître’s equation : 

𝐻 =
𝑎′(𝑡)

𝑎(𝑡)
 

Where a(t) is the expansion of space factor and a’(t) its time derivative.  

𝐻 =
𝑎′

𝑎
=

𝑑

𝑑𝑡
ln(

𝑎(𝑡)

𝑎0
) =

𝑑

𝑑𝑡
ln (

1

1 + 𝑧
) =  

−1

1 + 𝑧

𝑑𝑧

𝑑𝑡
 

By replacing H by its value (for Ωk = 0), listed below: 

 

𝐻 = 𝐻0√( Ω𝑟𝑎𝑑(1 + 𝑧)4  + Ω𝑚(1 + 𝑧)3 + ΩΛ) 

We get: 

𝑑𝑡

𝑑𝑧
=  

−(1 + 𝑧)−1

𝐻0√( Ω𝑟𝑎𝑑(1 + 𝑧)4  + Ω𝑚(1 + 𝑧)3 + ΩΛ)
 

 

This will allow to replace the coordinate time t by the parameter z in the equations. 


