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Introduction 

 

Currently, this problem of incompatibility, between the values of H0 at z >> 1 (that using 

the CMB (Cosmological Microwave Background), giving a value of H0 of about 67.27 ± 0.6 

km / s / Mpc, and those of many methods based on observations at z <1 (SN1A, Cepheids, etc.) 

giving a value of H0 of about 73.52 ± 1.62 km / s / Mpc, seems to question the standard 

cosmological model.  

At first, one questioned the accuracy of the observations, but these values deviate by more 

than 4 σ from their probabilistic diagram so, as so many measurements have been made and 

verified, this hypothesis is less and less credible.  

Today, we are in expectation, fearing for some and hoping for others, a questioning of the 

standard model and therefore the theory of general relativity which supports modern 

cosmology. The history of science teaches us that no theory is definitive, but currently, there is 

not any so effective alternative theories to replace it.  

What a theory physically predicts depends on the parameters associated with it and the 

assumptions made. Let us recall that the assumptions of homogeneity and isotropy of the 

universe are drastic approximations which, even on a large scale (matter is gathered in 

filamentous structures with gigantic voids), are far from being really satisfied.  

Inhomogeneous and anisotropic models of universes are studied, without too much 

success so far. We also know that 95% of what generates the dynamics of the universe (dark 

matter and dark energy) are of unknown nature, despite important research.  

On the other hand, the inflation paradigm, which solves a few problems, still looks as an 

ad hoc theory waiting for some experimental evidences.  

. However, before proclaiming the fall of the cosmological standard model, it is worth 

considering whether it is not its parameters that are wrong.  

Here, after a presentation of the problem, on an arbitrary example, we show how the value 

of H0 depends on the cosmological parameters. In this document, we assume that the 

fundamental notions of cosmology are known (Robertson-Walker metric, Friedman-Lemaître 

equation, density parameters Ωi, cosmological redshift z, luminosity distance dL, angular 

distance dA, the equation of state cosmological fluids, etc. 

 If not, and if necessary, see, for instance: http://www.astro.ucla.edu/~wright/cosmolog.htm 

http://www.astro.ucla.edu/~wright/cosmolog.htm


Brief survey of measurement methods used to determine H0. 

 

An essential difference in these methods is the value of the redshift of the observed and 

measured phenomenon.  

Method like SN1A, considered as a standard candle (light source whose intrinsic 

luminosity is known), for example, where z <1, uses the distance of luminosity dL deduced from 

an observable which is the measure of the power of light of the object considered (by a device 

associated with the telescope measuring the energy of the photon flow) that we will combine 

with the redshift z (measured by a spectrometer on the telescope), which is another observable 

of the object considered.  

This makes it possible to plot z(dL) curves for different values of z that we will compare 

with those predicted by the different models and to eliminate some of them and keep others as 

possible (best matching method). 

Which models are compatible with the experimental data? 

 

 

Figure 1: Selection method by best matching to experimental data. 

 On the diagram above, a set of measurement points for the observations of the redshift z 

has been represented by star, as a function of the luminosity distance dL. A dashed curve, 

connecting them, interpolates the experimental law z (dL). Each point must be associated with 

an error bar linked to the inaccuracy of the measurement. We have drawn 3 curves A, B, C 

corresponding to 3 different cosmological models. We see that for example the curve B is the 

most compatible with the experimental data. On the other hand, curves A and C are to be 

excluded. 



 It is this best fit between observations that will determine which models are compatible 

with the observations and exclude those that are too far from them, taking into account 

measurement inaccuracies. Note that this diagram is approximate and only claims to illustrate 

the phenomenology described.  

Luminosity distance 

 In Euclidean space, the light power F (energy of light received per unit area and per unit 

of time) from an isotropic source (the Sun for example) of total luminosity L is equal to: 

𝐹 =
𝐿

4𝜋𝑟2
                                (1) 

where r is the distance between the receiver and the source.  

This is simply explained by the fact that the flow is distributed over the surface of a sphere 

of radius r whose area is 4 π r². In a non-Euclidean space, other phenomena must be taken into 

account. 

 In an expanding space, as described by the Robertson -Walker metric, the emitted 

photons will be redshifted by the expansion therefore their energy will be divided by 

1 + 𝑧 =
𝑎(𝑡0)

𝑎(𝑡𝑒)
                                  (2) 

Where z is the observed redshift of the source and a (t) are the scale factors at the emission 

time of the photon at te and at the reception of the photon t0, (now). A second phenomenon also 

occurs, the time interval between photons increases all along the geodesic, due to the expansion 

of space, by a factor also equal to (1 + z), this reduces the received light power.  

We will define the luminosity distance dL, by the relation:  

𝐹 =
𝐿

4𝜋𝑟2. 𝑎(𝑡0)2(1 + 𝑧)2
=

𝐿

4𝜋𝑑𝐿
2            (3) 

Which gives : 

𝑑𝐿 = 𝑎(𝑡0)𝑟(1 + 𝑧)                                        (4) 

Note that in equation (3), we do not know r which is a coordinate, but dL is defined by (3) 

since L is a standard candle of known absolute luminosity and F is measured by the observer. 

Similarly, z is an observable (redshift of the object, measured by a spectrometer). 

 Let us recall that it is by the diagrams representing the function z(dL) that the acceleration 

of the expansion was detected (1998) and that it allowed, as such, to reintroduce the 

cosmological constant in the standard model, by using the method of the best fit to the 

experimental data as described in Figure 1, 



 

In addition to discriminating between different cosmological models, the luminosity distance, 

a simplified expression of which is given by equation (5) below, shows that this luminosity 

distance depends on the Hubble constant H0.   

 

It can therefore be used to estimate the value of the Hubble constant. Its general expression is 

quite tricky, it is simplified if the spatial curvature of the universe is (about) zero, (Ωk = 0). 

 Let’s make this assumption, consistent with the current assumption on spatial curvature.  

This luminosity distance dL from the object located at a spectral shift z * is given by:  

𝑑𝐿 =  
1 + 𝑧

𝐻0
 ∫

𝑑𝑧

√ Ω𝑟𝑎𝑑(1 + 𝑧)4  + Ω𝑚(1 + 𝑧)3 + ΩΛ

𝑧∗

0

          𝑒𝑞 5 

Note that the expansion parameter is not t but z, an observable. This required a transformation 

which is described in the appendix. This equation includes H0, the value of H for z = 0, which 

is a constant in equation 5 (therefore can be outside of the integral). H is linked to H0 by the 

formula:  

𝐻 = 𝐻0√( Ω𝑟𝑎𝑑(1 + 𝑧)4  + Ω𝑚(1 + 𝑧)3 + ΩΛ)               𝑒𝑞. 6 

Planck and WMAP calculated the value of H0 by using the Fourier analysis in spherical waves 

of the inhomogeneities of the CMB which provides the position of the first peak which is an 

angle which is the value of the angular view size of the sonic horizon. The size of this 



horizon, in turn, will be calculated by the distance traveled by sonic waves up to the time of 

baryons/photon decoupling, this depending of the sonic velocity of these waves in the plasma. 

These two data will provide the angular distance dA, whose general definition is the distance 

associated to the viewed angle of an object of known size. 

 

 

 Figure 2: Representation of the temperature of the CMB in "false colors".  

The image corresponds to the complete celestial sphere, the Planck Satellite being at the 

Lagrange L2 point, 1.5 million km from Earth. All the information is contained in this image.  

 

Figure 3: Result of the 2D Fourier transform of the RFC. 



This transform extracts the proportion of patterns associated with each size identified by the 

value of the multipole or the associated angle.  

The plasma being an elastic medium, the inhomogeneities generate acoustic waves, therefore 

the peaks which correspond to the most intense modes (mainly the fundamental mode, 

corroborated by its harmonics). This defines the size of the sonic horizon in the plasma. 

 There is a simple relationship between dL and dA: 

𝑑𝐴 =
𝑑𝐿

(1 + 𝑧)2
  =     

1

(1 + 𝑧)𝐻0 
 ∫

𝑑𝑧

√ Ω𝑟𝑎𝑑(1 + 𝑧)4  + Ω𝑚(1 + 𝑧)3 + ΩΛ

𝑧∗

0

       𝑒𝑞 7 

 

dA, therefore, also depends on H0. Let us suppose, for example, that the cosmological constant, 

instead of being constant, depends on z (and therefore on t). Under these conditions it is 

necessary to introduce a factor f (z) associated with the cosmological constant λ, which will 

have a significant effect for z >> 1, while keeping the value for z = 0. This will introduce a 

difference of phenomenology.  

𝑑𝐴 =  
1

(1 + 𝑧)𝐻0 
 ∫

𝑑𝑧

√ Ω𝑟𝑎𝑑(1 + 𝑧)4  + Ω𝑚(1 + 𝑧)3 + 𝑓(𝑧)ΩΛ

     𝑒𝑞 8
𝑧∗

0

  

 

The law that we are going to propose is an example and does not claim any physical character, 

this will aim to show that the effect can be significant.  

In the equation (8), if the integral increases, since the experimental value of dA is a given 

experimental data 1, the factor H0, must increase for keeping dA constant. 

The exact impact of this correction is likely quite complex, but an empirical example modifying 

the vacuum equation of state of the cosmological constant is given as an example to illustrate 

the mechanism.  

Numerical example 

We are interested in the case z >> 1 (method using the results of Planck which are more 

recent than those of WMAP). 

 Ωm = 0.306 

 Ωrad = 0.00009236  

ΩΛ = 0.694 

 
1 In fact, dA is deduced from the analysis of CMB and cosmological parameters. The size of the "sonic" 

horizon is deduced from the time until decoupling and from the velocity of sound (velocity of propagation of 

inhomogeneities in a photon-baryon plasma) and the angle of sight is given by the Fourier transform of the CMB 

(position of the first peak). 



 Let's write the part of the equation that describes the influence of H0 with these 

conventions and values:  

a) Case where the cosmological constant does not vary 

1

𝐻0
∫

𝑑𝑧

√ 0,00009236(1 + 𝑧)4  + 0,306(1 + 𝑧)3 + 0,694

1089

0

       𝑒𝑞 9 

 

b) Case where the cosmological is no longer constant and is a function of z while keeping 

its value for z = 0. 

Let us say, for example 

𝑓(𝑧)  =  10−𝑧10−3

  

which satisfies these constraints. 

1

𝐻0
∫

𝑑𝑧

√ 0,00009236(1 + 𝑧)4  + 0,306(1 + 𝑧)3 + (0,694)10−[𝑧(10−3)]

   𝑒𝑞 10
1089

0

 

a) In this case, the value of the integral given by mathematica's "NIntegrate" (numerical 

integration) function is : 3.15393 

     b) In this case, the result given by mathematica by the function NIntegrate is : 3.43586 

 

Deduced value of H0 

 

Let us Recall the equation that governs these parameters 

𝑑𝐴 =  
𝑐

(1 + 𝑧)𝐻0 
 ∫

𝑑𝑧

√ Ω𝑟𝑎𝑑(1 + 𝑧)4  + Ω𝑚(1 + 𝑧)3 + 𝑓(𝑧). ΩΛ

𝑧∗

0

 

 

We see that if we know dA and the value of the integral, since we know the redshift z and 

as c is the velocity of light, we can deduce H0. If the value of the integral increases the value of 

H0 (which is the denominator) must also increase for the same value of dA. 

 If the equation with the standard parameters gives: 

 

67.27 km / s / Mpc, 

 

then with the varying cosmological constant we will obtain: 

𝐻0

67.27
=

3.43586

3.1531
  → 𝐻0 ≈ 73.30   𝑘𝑚/𝑠/𝑀𝑝𝑐 



This result would be compatible with the value given by the SN1A but, let us recall that the 

proposed modification is purely arbitrary and has no physical character2.  

 

How do we know dA? 

Less us remember that by definition: 

dA. θ = ds 

dA is the angular distance where we see the size ds of the sonic horizon, under the angle θ 

which is deduced from the position of the first peak in figure 3, which is equal to: 

θ = 0.0104 radian ≈ 0.6 °, 

 in this case. The size of the object ds, the sonic horizon, which is the maximum limit for 

the propagation of sonic waves in the plasma from the origin 

t = 0 + up to t = 380,000 years 

up to the photon-matter decoupling, can be deduced from others parameters of the CMB, 

characterizing the plasma, such as the ratio between the baryons and the photons which are in 

thermal equilibrium and which determine the sonic speed (velocity of propagation of 

inhomogeneities in the plasma)3.  

 

When we, know the size of the horizon and the angle at which we see it, this allows us to 

define the angular distance dA and consequently H0 since we then know all the other parameters.  

 
2 Note that if it keeps the value of the integral for z = 0, it varies very significantly for 0 <z <1. The value 

for SN1A would be different with the equation of case b. Let us add that we could modify the function to adjust it 

even better to the experimental data, it would then remain to provide the physical justification. 
3 The equations giving the size of the sonic horizon are quite tricky, see for instance: 

 https://ned.ipac.caltech.edu/level5/Sept02/Reid/Reid5_2.html,, chapter 5.2, acoustic peaks and the 

cosmological parameters. 

https://ned.ipac.caltech.edu/level5/Sept02/Reid/Reid5_2.html


Conclusion  

When the theory in force (the standard model of cosmology) seems to be faulty, before 

abandoning it for another, assuming that there is, currently, one which is better (this is 

appreciated on the set of predictions that the theory makes), it must be ensured before that it is 

used correctly. 

 The case of cosmology is particular, insofar as, for the theory, drastic simplifying 

assumptions have been made (homogeneity and isotropy on a large scale), essentially to find 

analytical solutions! We know that this is highly approximate.  

We illustrate how a modification in parameters could change the results. Likely one could 

do better for matching the experimental data. We selected the cosmological constant, as a 

sensitive parameter, because it has no well-known physical interpretation.  

History has shown that an experiment could make a theory falter, as the Michelson-

Morley experiment for mechanics which induced special relativity, and that of the black body 

for mechanics, which induced quantum mechanics. 

 For the problem of the Hubble constant, if we look at the existing “competing” theories, 

it is not obvious that there is currently a better one, and some (in particular to quantify gravity) 

are still under construction, and this despite the considerable research efforts that have been 

devoted to it. Of course, a theory is not a truth, it is not definitive, and history has shown how 

they could be improved, a task incumbent on physicists.  

This anomaly of the Hubble constant is finally perhaps an opportunity, because by the 

nature of the problem which it raises, (laws which seem to depend on z, differently from what 

one thought), like the examples mentioned previously, it can give us information for a lead 

towards a new approach.  

 

Appendix 

The Friedmann-Lemaître equation uses the Robertson-Walker’s metric whose coordinates 

are t, r, θ and φ. As we would like to use the parameter z (the redshift) in place of t, as expansion 

parameter, because z is an observable, we will calculate the Hubble constant defined in the 

Friedmann-Lemaître’s equation : 

𝐻 =
𝑎′(𝑡)

𝑎(𝑡)
 

Where a(t) is the expansion of space factor and a’(t) its time derivative.  



𝐻 =
𝑎′

𝑎
=

𝑑

𝑑𝑡
ln(

𝑎(𝑡)

𝑎0
) =

𝑑

𝑑𝑡
ln (

1

1 + 𝑧
) =  

−1

1 + 𝑧

𝑑𝑧

𝑑𝑡
 

By replacing H by its value (for Ωk = 0), listed below: 

 

𝐻 = 𝐻0√( Ω𝑟𝑎𝑑(1 + 𝑧)4  + Ω𝑚(1 + 𝑧)3 + ΩΛ) 

We get: 

𝑑𝑡

𝑑𝑧
=  

−(1 + 𝑧)−1

𝐻0√( Ω𝑟𝑎𝑑(1 + 𝑧)4  + Ω𝑚(1 + 𝑧)3 + ΩΛ)
 

 

This will allow to replace the coordinate time t by the parameter z in the equations. 


