Is our existence only possible in a universe made up of three spatial dimensions and one of time?

 Arguments

This topic has been studied in a few articles. Usually, these studies extrapolate what we know and show that the laws of physics that support the stability of our world are (presumably) only possible in such a configuration, although they do not completely rule out other possibilities.

 For example, it is pointed out that in Newtonian gravitation, the existence of stable orbits of planets, around a spherical star (of 3-dimensional volume whose surface is a 2-sphere) results from a law of gravitation decreasing in r², which is understandable because the action of gravitation is represented by an isotropic flow emanating from the spherical star of mass M, crossing the 2-spheres of radius r surrounding the star. This surface being equal to 4πr², the flux crossing a constant surface, is “diluted” on the surface of these 2-spheres in 1 / r².

In relativity the relationship is more complex because it is a 4-dimensional global spatio-temporal geometry that is defined, but in a stationary weak field (far from sources generating the “gravitational field”), Newtonian gravitation represents an efficient approximation.

With 4 dimensions of space, by transposing this, we would have a “hyper-star”, hyper-spherical of hyper volume in 4 dimensions, of “hyper-mass” HM, but whose law should, according to the same principle, decrease in 1 / r3 .

This is because the hypersurface of the hypersphere, delimiting the hypersphere, in the “hyperspace-time” with a 5 dimensions signature {-, +, +, +, +}, (if we consider a single temporal component, associated with the four of space), is a 3- sphere.

In a four dimensional “Newton-like mechanics” , this configuration would not produce stable orbits, where the planet would remain long enough at the same distance from the star, star itself stable during this time, as requested for the emergence of life.

 Would it be in this hypersurface of signature {-, +, +, +}, that we, humans, (who are three-dimensional beings in space), would live ?

In general relativity, if it is the case, the related phenomenology in this 4-dimensional sub-manifold of the 5-dimensional manifold (a brane?), would be described by the geometry of this sub-manifold.[1]

Anyway, the argument has its limits, because do we really know what physical representation and which experiences should be conducted for grasping the paramters of such “hyper mass”of an “hyper star” and what kind of field it would generate, especially in classical mechanics. [2] .

In relativity, we must find geodesics in the geometry of the “hyperspace-time”, that comply with the criteria of stability, compatible with our emergence.

It is also argued that the existence of stable atoms, as we know them, would be impossible. This would ruin the possibility of a world as we know it.

But, in a 5-dimensional “hyper-spacetime”, we do not really have any ideas on the representation of the associated phenomenology! See the chapter “Can we avoid an anthropomorphic approach?”.

Comments on these arguments

 The 3 + 1 dimensional configuration (three of space and one of time) results from a Newtonian approach. In relativity, this is not the case. The structure of space-time is not (3 + 1) but 4 and foliating it into (3 + 1) has no physical character (it’s totally arbitrary).

Therefore, as developed in other pages of this site [3], the null coordinate approach (Newmann-Penrose formalism), taking into account the fundamental role of light which gives the hyperbolic structure to our universe, would give a more physical representation than foliation (3 + 1).

Signature of the metric in general relativity

The hyperbolic structure of the metric of the general relativity is inherited from that of the special relativity metric which is (-, +, +, +), the time coordinate being associated with the “minus” sign and the three space coordinates with the “plus” sign, in Minkowski’s representation because, locally, special relativity applies (except on singularities where the theory is not valid).

Comments, on this topic.

In general relativity, a local basis defined by the tangent vectors at the global coordinates defined on the manifold, may present a different signature. For instance, inside the horizon of black holes, the four global coordinates can be simultaneously spacelike.

However, a local Minkowski base, which can be defined at a point, will still have the signature (-, +, +, +). The hyperbolic structure of space-time is well preserved as the Sylvester’s theorem guarantees it. Let us not forget that the coordinates are arbitrary. The signature (-, +, +, +) is valid in the form of Minkowski. In the Newmann-Penrose formalism, since the local basis has 4 null vectors, the signature would rather be written (0, 0, 0, 0).

Case where there are two global coordinates simultaneously timelike.

This case is usually considered as not compatible with the existence of life.

Keeping in mind what was said previously about the local metric which also applies in this strange case, let us point out that in relativity, there are solutions, like the Kerr and Kerr-Newmann space-times [4] , where, although the Minkowskian local signature of the metric remains {-, +, +, +} everywhere, in some regions there may exist simultaneously two global timelike coordinates (in this case t and φ in the spherical coordinates (t , r, θ, φ), generating a metric signature for these coordinates (t, r, θ, φ) of the type {-, +, +, -}.

 If this case is rare, it nevertheless exists, and its impossibility has never been demonstrated. This, pointed out by B. Carter [5], results in a flagrant violation of causality, with all its consequences. There are worldlines between 2 events A and B where A could have been the cause of B and B the cause of A, we can go back in time and many other temporal paradoxes are possible [6].

 However, it should be emphasized that these worldlines are not geodesic, they require an interaction with a phenomenon other than gravitation: for instance, the ejection of matter by a rocket causing an acceleration by reaction.

Thus, according to the definition given of general relativity, we can either consider that these solutions are not to be considered if we consider that only geodesics are described by general relativity [7], or that they are to be considered if one accepts other types of worldlines than the geodesics.

In the latter case, the spacetime of general relativity then serves as a “base” and the local spacetime where non-gravitational phenomena can exist and interact with bodies in spacetime is a “fiber”.

These examples show that the phenomenology described by general relativity is not compatible with the description of a universe with 3 dimensions of space and one of time since, in relativity, time and space are not physical, they are only shadows of spacetime, as stated in Plato’s allegory of the cavern.

Can we avoid an anthropomorphic approach?

This criticism has a more general character, it is certain that we seek to determine if other conditions could give the same phenomena as those which one observes. This implies a great effort to our mind! One is aware of the effort already necessary for understanding the concept of spacetime in relativity which destroyed those of space and time that we supposed inherent to our mind and that of indeterminism in quantum mechanics that ruins the basis of classical physics. Imagining more dimensions would be a step further!

If the weak anthropic argument [8] confirms us on the existence of conditions, (and also specifies limits), allowing to achieve what we observe, which is a truism, it does not say anything about possibilities which would be very different, but which structurally could give something of the same type, in a more or less evolved way.

The universe and its existence, like ours, is a subject where many mysteries will likely remain forever.


[1] In some theories, there are “branes” that have dimensions smaller than that of the space containing them. Here space is taken in the general sense which can contain dimensions of the time type. Let’s not forget the null type dimensions.

[2] If we do not understand very well what a hyper-mass could be in Newtonian mechanics, this does not pose a problem in relativity: The energy-momentum tensor Tμν would be defined for μ, ν varying from 0 to 4. But, let us keep in mind that even though the mathematical formalism is straightforward in relativity, its physical representation and the associated physical tests are problematic.

[3] A detailed description can be found in: http://www.astromontgeron.fr/SR-Penrose.pdf

[4] A rigorous analytical solution was found by Kerr in 1963 to the problem of rotating black holes, well after Schwarzschild’s solution for static black holes which dates from 1916. Note that the problem seemed simple, however, since a rotating black hole is totally defined by 2 parameters: its mass M and its angular momentum J. If the black hole is charged (which is unlikely in cosmology) a third must be added. parameter: the electric charge E. In this case the black hole also has a magnetic moment.

[5] Global Structure of the Kerr family of gravitational fields. Brandon. Carter. Phys. Rev. Vol. 174. Number 5,25 october 1968. A free translation in French is available in: http://www.astromontgeron.fr/A_Carter-68-F.pdf

[6] See a detailed analysis in: http://www.astromontgeron.fr/Trous-noirs-de-Kerr-M2-JF.pdf.

[7] This is the strict definition of the theory of general relativity which deals only with gravity. But, nothing prevents to consider the other hypothesis.

[8] “Argument” is more appropriate than “principle”.

Notre existence n’est-elle possible que dans un univers fait de trois dimensions spatiales et une de temps ?

Arguments en faveur d’une réponse positive 

Ce sujet a été étudié dans quelques articles. Habituellement, ces études extrapolent ce que nous savons et montrent que les lois de la physique qui soutiennent la stabilité de notre monde ne sont (vraisemblablement) possibles que dans une telle configuration, même si elles n’excluent totalement pas d’autres possibilités.

Par exemple, on fait remarquer qu’en gravitation newtonienne, l’existence d’orbites stables de planètes, autour d’une étoile sphérique (de volume à 3 dimensions dont la surface est une 2-sphère) résulte d’une loi de la gravitation décroissant en r², (rayon de l’orbite au carré), ce qui se comprend car l’action de la gravitation est représentée par un flux isotrope émanant de l’étoile sphérique de masse M, traversant les sphères de rayon r entourant l’étoile. Cette surface valant 4πr², le flux traversant une surface constante, se « dilue » sur la surface de ces sphères en 1/r². En relativité la relation est plus complexe, car c’est une géométrie globale spatio-temporelle à 4 dimensions qui est définie, mais en champ faible stationnaire (loin des sources générant le « champ gravitationnel »), la gravitation newtonienne représente une approximation utilisable.

Avec 4 dimensions d’espace, en transposant cela, on aurait une hyper-étoile, hyper-sphérique d’hyper volume à 4 dimensions, d’hyper-masse HM, mais dont la loi devrait, selon le même principe décroître en 1/r3, puisque l’hyper-surface de l’hypersphère, délimitant l’hypersphère dans l’hyperespace-temps à 5 dimensions de signature {-, +, +, +, +}, si on considère une seule composante temporelle associée aux quatre d’espace, est une sphère à 3 dimensions d’espace.

Ce pourrait être dans cette hypersurface, de signature {-, +, +, +}, que nous, qui sommes des êtres tridimensionnels en espace, vivrions et il resterait à décrire la phénoménologie afférente dans cette sous-variété à 4 dimensions de la variété à 5 dimensions[1].

En mécanique classique, cette configuration ne produit pas d’orbites stables où la planète reste suffisamment longtemps à la même distance de l’étoile elle-même stable pendant ce temps, comme cela semble jugé nécessaire pour l’émergence de la vie.

Notons que l’argument a ses limites, car sait-t-on vraiment comment serait le champ généré par l’hyper masse[2]  d’une hyper étoile en mécanique newtonienne ?

Si on revisite cela en relativité, on doit considérer les géodésiques de la géométrie des espaces temps, qui bien-sûr existent, mais effectivement il faudrait vérifier qu’il en existe certaines, satisfaisant aux critères de stabilité, compatibles avec notre émergence.

On fait également valoir que l’existence d’atomes stables serait impossible, ce qui ruine la possibilité d’un monde comme nous le connaissons. Mais un argumentaire du même type que celui développé pour les planètes peut aussi s’appliquer.

Quant à l’émergence d’êtres qui incorporeraient 4 dimensions d’espace, le tout dans un espace-temps à 5 dimensions, nous n’avons pas vraiment d’idées sur la représentation de la phénoménologique associée.

.

Première critique

La configuration 3 + 1 dimensions (trois de l’espace et une du temps) résulte d’une approche newtonienne. En relativité, ce n’est pas le cas. La structure de l’espace-temps n’est pas (3 + 1) mais 4, et le décomposer en (3 + 1) n’a aucun caractère physique (c’est totalement arbitraire).

 Par conséquent, comme développé dans d’autres pages de ce site [3], l’approche des coordonnées nulles, prenant en compte le rôle fondamental de la lumière qui confère la structure hyperbolique à notre univers, est bien plus réaliste que la foliation (3 + 1).

Une meilleure façon d’explorer ce sujet serait donc de suivre le formalisme Newman-Penrose exposé dans d’autres pages de ce site.

Signature de la métrique en relativité générale

La relativité générale hérite de la structure hyperbolique de la métrique de la relativité restreinte qui est (-, +, +, +), la coordonnée temporelle étant associée au signe « moins » et les trois coordonnées d’espace au signe « plus », dans la représentation de Minkowski, du fait que localement la relativité restreinte s’applique (sauf sur les singularités où la théorie n’est pas valide). Deux remarques à ce sujet.

  1. En relativité générale, une base locale définie par les vecteurs tangents aux coordonnées globales définies sur la variété, peut sembler présenter une signature différente. Sous l’horizon de trous noirs, les 4 coordonnées peuvent, par exemple, être simultanément de type espace. Pour autant, une base locale de Minkowski, qu’on peut définir en un point, aura bien la signature (-, +, +, +). La structure hyperbolique de l’espace-temps est bien préservée, le théorème de Sylvester le garantit, n’oublions pas que les coordonnées ont un caractère arbitraire.
  2. La signature (-, +, +, +) est valide dans la forme de Minkowski. Dans le formalisme de Newmann-Penrose, comme la base locale comporte 4 vecteurs nuls, la signature s’écrirait plutôt (0, 0, 0, 0).

Cas où il existe 2 coordonnées globales simultanément de type temps.

En gardant à l’esprit ce qui a été dit précédemment au sujet de la métrique locale qui s’applique aussi dans ce cas étrange, signalons qu’en relativité, il existe des solutions, comme les espace-temps de Kerr et Kerr-Newmann, [4] où, bien que la signature locale Minkowskienne de la métrique reste {-, +, +, +} partout, dans certaines régions il peut exister deux coordonnées globales de type temps (en l’occurrence t et φ  dans les coordonnées sphériques (t, r, θ, φ), générant une signature de métrique pour ces coordonnées ( t, r, θ, φ)  du type { -, +, +, -}.  Si ce cas est rare, il existe pourtant, et son impossibilité n’a jamais été démontrée.

Ceci, mis en évidence par B. Carter [5] , a pour conséquence une violation flagrante de la causalité, avec toutes ses conséquences. Il existe des lignes d’univers entre 2 événements A et B où A a pu être la cause de B et B la cause de A, on peut remonter le temps et bien d’autres paradoxes temporels sont possibles. [6]

Cependant il faut souligner que ces lignes d’univers ne sont pas géodésiques, elles nécessitent une interaction avec un phénomène autre que la gravitation : par exemple l’éjection de matière par une fusée provoquant une accélération par réaction.

Ainsi, selon la définition qu’on donne de la relativité générale on peut, soit considérer que ces solutions ne sont pas à prendre en compte si on ne considère que seules les géodésiques sont décrites par la relativité générale [7], soit qu’elles sont à prendre en compte si on accepte d’autres types de lignes d’univers que les géodésiques. Dans ce dernier cas, l’espace-temps de la relativité générale sert alors de « base » et les espace-temps locaux où les phénomènes non gravitationnels peuvent exister et interagir, ce qui amène à définir un couplage, sont des « fibres ».

Ces exemples montrent que la phénoménologie décrite par la relativité générale n’est pas compatible avec le cadre simple que lui confèrerait une description de l’univers par 3 dimensions d’espace et une de temps, par nature, puisqu’en relativité le temps et l’espace ne sont pas physiques, ils ne sont que des ombres de l’espace-temps, comme cela est exposé dans l’allégorie de la caverne de Platon.

La deuxième critique concerne l’approche anthropomorphique.

Cette critique a un caractère plus général, il est certain que nous cherchons à déterminer si d’autres conditions pourraient donner les mêmes phénomènes que ceux qu’on observe. Si le principe anthropique faible nous conforte sur l’existence de conditions, (en précisant des limites), permettant d’aboutir à ce qu’on observe, ce qui est un truisme, il ne dit rien sur des possibilités qui seraient très différentes mais qui structurellement pourrait donner quelque chose du même type, de manière plus ou moins évoluée, et encore moins sur quelque chose qu’on n’est même pas capable de concevoir.

L’univers et son existence, comme la nôtre, est un sujet où bien des mystères demeurent.


[1] Dans certaines théories, il existe des « branes » qui ont des dimensions inférieures à celle de l’espace les contenant. Ici espace est pris au sens général pouvant contenir des dimensions de type temps. N’oublions pas les dimensions de type nul.

[2] Si on ne conçoit pas très bien ce que pourrait être une hyper-masse en mécanique newtonienne, cela ne pose pas de problème en relativité : The tenseur énergie -impulsion Tμν serait défini pour μ, ν variant de 0 à 4.

[3] On trouve une description détaillée en : http://www.astromontgeron.fr/SR-Penrose.pdf

[4] Une solution analytique rigoureuse a été trouvée par Kerr en 1963 au problème des trous noirs en rotation, bien après la solution de Schwarzschild pour les trous noirs statiques qui date de1916. Soulignons que le problème paraissait pourtant simple puisqu’un trou noir en rotation est totalement défini par 2 paramètres : sa masse M et son moment angulaire J. Si le trou noir est chargé (ce qui est peu probable en cosmologie) il faut ajouter un troisième paramètre : la charge électrique E. Dans ce cas le trou noir possède aussi un moment magnétique.

[5] Global Structure of the Kerr family of gravitationnal fields.. Brandon. Carte,r.Phys. Rev. Vol. 174. Number 5,25 october 1968. Une traduction libre en français est disponible en : http://www.astromontgeron.fr/A_Carter-68-F.pdf

[6] Voir une analyse détaillée dans : http://www.astromontgeron.fr/Trous-noirs-de-Kerr-M2-JF.pdf

[7] C’est la définition rigoureuse de la théorie de la relativité générale qui ne traite que de la gravitation. Mais, rien n’interdit de considérer l’autre hypothèse.