
Cosmology. Problem of the Hubble constant H0: a way to reconcile the 

measurements made by PLANCK and WMAP (phenomenon observed 

at z >> 1 with those at z <1, such as the SNIA method, for instance). 

 

Introduction  

 
Currently this problem of incompatibility between the values of the Hubble constant, 

which value is H0, now days, deduced from the measurements by methods based on 

observations at z >> ,1 such as that of the CMB (Cosmological Microwave Backgroung), giving 

a value of H0 of approximately 67.27 ± 0.6 km / s / Mpc, and those of many other methods 

based on observations at z <1 (SN1A, Cepheids, etc.) giving a value of H0 of approximately 

73.52 ± 1.62 km / s / Mpc, seems to question the standard cosmological model.  

 



We may question the accuracy of the observations, but these values deviate by far more 

than 4 σ from their probabilistic diagram therefore, this hypothesis is less and less credible.  

Up today, we are in the doubt, some fearing and others hoping that this would invalidate 

the standard model and even of the theory of general relativity, itself, of which we know that, 

if it certainly has nothing definitive as the history of science suggests, there is not much 

available and so effective other theory for replacing it. What a theory physically predicts 

depends on the parameters associated with it and the assumptions made.  

Let us recall that the assumptions of homogeneity and isotropy of the universe are drastic 

approximations which even on a large scale (matter is gathered in filamentous structures with 

gigantic voids) are far from being really satisfied. Inhomogeneous and anisotropic models of 

universes are studied, without much success so far. We also know that 95% of what generates 

the dynamics of the universe (dark matter and dark energy) are of unknown nature, despite 

important research. Moreover, the paradigm of inflation, while it advantageously solves a few 

problems, is still an ad hoc theory. Some physicists believe that we will be able to provide 

experimental proof, which would strengthen the hypothesis, but for the moment such proof is 

lacking. With this problem on the Hubble constant, it's starting to do a lot for this standard 

model of cosmology.  

However, before discarding definitely the general relativity, it is worth considering how 

we use the parameters. Here we propose a method which yields a result different of that of the 

usual calculation. General relativity, of which cosmology is an application, is a (geometric) 

theory of gravitation, it only deals with the gravitational interaction and does not take into 

account the 3 other interactions at all, two of which are very local but of which the another 

which is electromagnetism is also a long-range interaction (reputed to be infinite). If light, 

photons, participate as a fluid, in the dynamics of the universe, it is by using their energy-

momentum tensor which is symmetrical. The electromagnetic interaction is governed by the 

electromagnetic tensor which is an antisymmetric tensor (these tensors are related but rule very 

different phenomenology’s). Thus, as we will develop in this document, in the plasma era, the 

coupling, via the electromagnetic interaction, between the charged matter of the plasma and the 

photons can influence the dynamics.  In this method, it is not relativity which was faulty, but 

simply the analysis of the problem. 

In this document, we assume that the fundamental notions of cosmology, (Robertson-

Walker metric, Friedman-Lemaître equation, density parameters Ωi, cosmological spectral shift 



z, luminosity distance DL, angular distance DA, equation of state cosmological fluids, etc., are 

known by the reader. If this is not the case and if necessary, see the tutorial: 

http://www.astro.ucla.edu/~wright/cosmolog.htm  

 

Brief survey of measurement methods used to determine H0.  

 

An essential difference in these methods is the value of the spectral shift (z) of the 

observed and measured phenomenon.  

Methods like, for instance, methods using the SN1A and Cepheids, which are objects at 

z <1, are supposed to be standard candles (light sources whose intrinsic power are known), use 

a parameter called the distance of luminosity DL.  

This distance of luminosity is deduced from an observable which is the measurement of 

the received power of light of the considered object (by a detector in the telescope measuring 

the energy of the photon flux). We will associate it with the spectral shift z (measured with a 

spectrometer in the telescope), which is another observable of the same object. This will make 

possible to plot z = f (DL) curves for different values of DL, that we will compare with those 

predicted by the different models, and to eliminate some of them and keep others as possible, 

(best fit method). 

 

 *************************************************************************** 
Which cosmological models are compatible with experimental data? 

 
Figure 1: Best fit method for selection of cosmological models 

 

http://www.astro.ucla.edu/~wright/cosmolog.htm


On the diagram above, a set of measurement points for the observations of the spectral 

shift z, has been represented by stars, as a function of the luminosity distance DL. A dashed 

curve, connecting them, interpolates the experimental law z (DL). Each point must be associated 

with an error bar linked to the inaccuracy of the measurement. We have drawn 3 curves A, B, 

C corresponding to 3 different cosmological models. We see that, for example, curve B is the 

most compatible with the experimental data. On the other hand, curves A and C are to be 

excluded. 

 It is by this best fit method between the observations curve and those of cosmological 

models that we will select which models are compatible with the observations and exclude those 

that are too far from them, considering measurement inaccuracies. Note that this diagram is 

approximate and only claims to illustrate the phenomenology described. 

*************************************************************************** 

Considering that the measured spatial curvature of the universe is zero, (Ωk = 0), as this 

simplifies the calculations, we will make this assumption, in our calculations. The distance of 

luminosity DL of the object located at a spectral shift z * is given by: 

𝐷𝐿 =  
1 + 𝑧

𝐻0
 ∫

𝑑𝑧

√ Ω𝑟𝑎𝑑(1 + 𝑧)4  + Ω𝑚(1 + 𝑧)3 + ΩΛ

𝑧∗

0

          𝑒𝑞 1 

 

Note that the dynamic parameter is z, an observable. This required a transformation which is 

described in the appendix. This equation includes a term which is the value of H (its value varies 

from that of H0, for z = 0, up to the maximum value of H, for the spectral shift z *, at the 

cosmological time t* of the observed phenomenon. As H0 is a constant, in equation 1, it can be 

extracted from the integral. 

 

𝐻 = 𝐻0√( Ω𝑟𝑎𝑑(1 + 𝑧)4  + Ω𝑚(1 + 𝑧)3 + ΩΛ)               𝑒𝑞. 2 

 

The method used by Planck and WMAP extracts the value of H0 from a Fourier analysis in 

spherical waves of the inhomogeneities of the CMB.  The first peak of it gives the value of the 

angular size of the horizon in angle (more often we use moments, but there is a correspondence 

between the two).  

This corresponds to another observable which is the angular distance DA, which relates the 

angular size θ of an object of known intrinsic size D to the distance by the relation: θ.DA = D. 



 
 

Figure 2: CMB image, in false colors representing the temperature of inhomogeneities. 

 

The image above corresponds to the full celestial sphere, The Planck Satellite being at the 

Lagrange L2 point. As this point is at 1.5 million km from the Earth, he sees the entire celestial 

sphere (360 °) from its “center”. This is difficult to represent, but this is what the image is trying 

to suggest. The ovoid shape of the image results from the projection of the celestial spherical 

surface onto a plane, which cannot be achieved without distortion. 

 



Result of the Fourier 2D transform process

 

Figure 3: Result of the 2D Fourier transform decomposition of the CMB.  

 

This decomposition makes it possible to extract the ratio of patterns of each size of 

inhomogeneity, identified by the value of the multipole or its associated angle. The plasma 

being an elastic medium, the inhomogeneities generate acoustic waves. Therefore, the peaks 

correspond to the most intense modes (mainly the fundamental mode, corroborated by its 

harmonics). This characterizes the size of the plasma (its horizon). 

 A phenomenology like that of vibrating strings, and acoustic resonances of sounds 

propagating in the air, in a closed box. There is a simple relationship between DL and DA: 

𝐷𝐴 =
𝐷𝐿

(1 + 𝑧)2
  =     

1

(1 + 𝑧)𝐻0 
 ∫

𝑑𝑧

√ Ω𝑟𝑎𝑑(1 + 𝑧)4  + Ω𝑚(1 + 𝑧)3 + ΩΛ

𝑧∗

0

       𝑒𝑞. 3 

 

Therefore, DA depend on H. 

Can we attribute the same equation of state to dark matter and baryonic 

matter?  

 

In equation 1, dark matter and baryonic matter are not separated.  The density parameter Ωm 

includes both. This assumes that they have the same equation of state, which implies that their 

"dynamics" are governed by the same factor (1 + z) 3.  



This is certainly acceptable for z <1, but for z >> 1 it would be surprising if this would be still 

the case. 

 Indeed, before the decoupling z > 1089, the universe is a plasma where the dark matter (in 

majority in the matter) does not interact with the photons of the plasma, this allowing to preserve 

the main part of the inhomogeneities. The baryons (mainly the protons) have an electric charge 

and therefore interact strongly, via the electromagnetic interaction, with the huge number of 

photons in this plasma (approximately 1 billion photons per baryon). This plasma is at a quasi- 

thermal equilibrium (the fluctuations that we measure are of the order of 10-5).  

 

What one observes on the "last surface of diffusion: the cosmological background radiation 

(CMB)", it is the result of what occurred during all the plasma era where 2 phenomena were 

opposed:  

The dark matter freezing the fluctuations of the plasma and the baryons, per their interaction 

with the huge number of photons, smoothing the fluctuations. As dark matter is dominant, most 

of the fluctuations have been preserved, but if there had been only baryons, what we would 

observe today would have been quite different: the fluctuations would be even weaker than they 

are.  

Therefore, for z >> 1, we have two different kinds of phenomenology, one for dark matter and 

another for baryonic matter, this being is negligible for z <1.  

Under these conditions it seems reasonable to consider them as two different kinds of matter 

with different equations of state and this can affect the value of H for z >> 1, therefore, on the 

value of H0, that we deduce from it, by the equation. 

 

𝐷𝐴 =  
1

(1 + 𝑧)𝐻0 
 ∫

𝑑𝑧

√ Ω𝑟𝑎𝑑(1 + 𝑧)4  + Ω𝑑𝑚(1 + 𝑧)3 + Ω𝑏𝑎𝑟(1 + 𝑧)3 𝑓(𝑧)+ΩΛ

𝑧∗

0

 

 

In this equation we have split Ωm into Ωdm and Ωbar and we have introduced a coupling 

factor f (z) for the baryons, the effect of which must be negligible for z <1.  

What effect can this difference in phenomenology, generate?  

 

In a thermal equilibrium, it is the number of "free" particles that counts. But if particles 

are coupled, they can no longer be considered as 2 free particles but rather behave as 

only one. 



This will make decrease the number of free baryons participating at thermal equilibrium, 

which, in turn lowers the density parameter of baryonic matter. Note that for the photons 

coupled with baryons as there are one billion per baryon, the decrease is negligible. 

The angular distance DA is a measured parameter therefore known, as well as the 

spectral shift z which is also a measured parameter. This defines the factor H.  

If the part, in parentheses of the right-hand-side of equation 1 decreases, as the value of 

H does not vary, the factor H0, must increase. Therefore, the measurement made from 

the CMB will be closer to those of measurements made by methods using sources at z 

<1.  

This goes in the right direction to reconcile the two deemed incompatible measures. 

 The exact impact of this correction is undoubtedly quite complex, but an empirical 

example separating dark matter from baryons is given as an example to illustrate the 

mechanism.  

 

Empirical example of the effect of taking this remark into account.  

 

The following example is purely illustrative of the effect of assigning different dynamic 

to dark matter and baryons, due to their different equation of state, for showing how this 

affects the value of H0.  

For dark matter, the density parameter is Ωdm and for baryonic matter the density 

parameter is Ωbar.  

We will model the coupling of baryonic matter (which causes Ωbar to decrease when z 

increases) by a function which has a negligible effect for z <1 and only has a sensible 

effect for z >> 1. 

 We are interested in the case z >> 1 (method using the Planck results which are more 

recent than those of WMAP).  

 

Ωdm = 0.258  

Ωbar = 0.048  

Ωrad = 0.00009236  

ΩΛ = 0.694  

The equations that describe the influence of H, with these conventions and data can be 

written:  



a- Case where we do not separate dark matter from baryons. 

1

𝐻0
∫

𝑑𝑧

√ 0,00009236(1 + 𝑧)4  + 0,306(1 + 𝑧)3 + 0,694

1089

0

 

 

b- Case where we separate dark matter from baryons. The coupling factor is defined by f(z) 

= [1- tanh(z/1089)]3 

 

1

𝐻0
∫

𝑑𝑧

√ 0,00009236(1 + 𝑧)4  + 0,258(1 + 𝑧)3 + 0,048(1 + 𝑧)3 (1 − tanh (
𝑧

1089))
3

+ 0,694

1089

0

 

 

Value of the integral in case a)  

By using the « NIntegrate » command in mathematica, where we set x = z + 1, this can 

be written:  

 

The result given by mathematica is:  → H0 = 67,27 km/s/Mpc 

 

For the case b), this can be written:  

 

The result given by mathematica is: → H0 = 67,61 km/s/Mpc 

The difference is low, (0,5%) but the coupling function, which is arbitrary, aimed just to 

illustrate the principle of the method.  

The result in b) is greater because it is the 1/H function which is evaluated.  Indeed, the 

multiplying factor of H0 is lower, this implying that H0 will increase for keeping the product 

constant. We just modified the function H (z). 

Numerical results for DA and H0 per these equations 

Let us recall the equation ruling the process. 

𝐷𝐴 =  
𝑐

(1 + 𝑧)𝐻0 
 ∫

𝑑𝑧

√ Ω𝑟𝑎𝑑(1 + 𝑧)4  + Ω𝑑𝑚(1 + 𝑧)3 + Ω𝑏𝑎𝑟(1 + 𝑧)3 𝑓(𝑧)+ΩΛ

𝑧∗

0

 

In previous calculations, we set c = 1. The dimensional analysis allows to re-introduce c. DA is 

a length, z, Ωi are dimensionless and 1/H0 is a time. For homogeneity we multiplied the term 

on the right, in the above equation, by c (velocity of light 299792458km/s). For the length units, 

3.1531142721606287`

3.1690764909827074`

https://translate.google.fr/saved
https://translate.google.fr/saved


we will select the meter (m) as a common unit and for the time the second (s).  Let us write H0 

with these units.1 

 

H0 = 6,7270 104 m/s/(3.0834x1022m) = 2,1817x 10-18 s-1.→1 /H0 = 0,45836 x 1018 s. 

 

The value of the integral is: 3, 1531 and z = 1089, this allows to calculate DA. 

 

𝐷𝐴 =  
2,99792458𝑥108

(1,090)103𝑥2,1817.10−18  3,1531 = 3,975𝑥 1023 𝑚 = 12, 89 𝑀𝑝𝑐 

 

The value of angular size deduced for the first peak of figure 3, is: θ = 0,0104 radian ≈ 0,6°. 

The size D of the sonic horizon is given by = θ x DA = 0.1341 Mpc 

 

These values are compatible with the well-known values resulting from the Planck mission. 

Conclusion  

 

When the current theory (the standard model of cosmology) fails to explain some phenomenon, 

before discarding it for another, assuming that there is one which would be better (this is 

appreciated on the set of predictions made by theory), we must ensure that it is used correctly.  

The case of cosmology is particular, insofar as, for the theory, drastic simplifying assumptions 

have been made (homogeneity and isotropy on a large scale), essentially for finding analytical 

solutions! We know that this is highly approximate, even if simulations show that, overall, even 

“sponge” structures with filaments produce results rather close to what the theory predicts. 

Nevertheless, caution is in order. In the example given, we see that the impact of the 

modifications exposed is low on the result. But it is a proposition that serves only as an example.  

If history has shown that a sole experiment could invalidate a theory, the Michelson-Morley 

experiment for mechanics which induced special relativity, that of the black body for 

thermodynamic, which induced quantum mechanics, for general relativity this is not really the 

case. The tiny anomaly of Mercury's orbit (advance of its perihelion) bothered astronomers a 

little, but nothing more. A cause, explicable within the framework of classical mechanics was 

assumed: a flatten shape of the Sun, a planet inside Mercury orbit (Vulcan) that we had not 

 
1   In a year there is 3600 x 24 x 365,15 ≈ 3.1549 x 107 seconds and in a light-year 9.458 x 1015 meters. A 

parsec is 3,26 light-years, i.e., 3.0834x 1016 meters, 1 megaparsec is 3.0834x 1022 meters. 

 



observed, etc. General relativity arose from Einstein’s strong belief that relativity should also 

apply to gravity! That it fixed the Mercury problem was a "divine surprise" that delighted its 

author, but the theory was not designed specifically for that. There were other totally 

unexpected surprises, and that is what made this theory so interesting and powerful!  

For the problem of the Hubble constant, if we look at the existing “competing” theories it is not 

obvious that there is a better one, and some (for quantifying the gravitation) are still under 

construction, and this, in spite, of considerable research effort devoted to it.  

Obviously, the problem is not simple. Of course, a theory is not a truth, it is not definitive, and 

history has shown how they can be improved, a task that falls to physicists.  

This anomaly of the Hubble constant is finally perhaps a chance, because by the nature of the 

problem which it raises, (laws which seem to depend on z, differently from what one expected), 

like the examples mentioned previously, it can give us information for a lead towards a new 

approach.  

However, this should not prevent us to verify that the explanation may reside within the 

framework of the existing theory and that this anomaly would be linked to a poor knowledge 

of the parameters and that, too, is for the physicist to do.  

 

Appendix : How define a function H (z). 

 

The Friedmann-Lemaître’s equation uses the Robertson-Walker’s metric, the coordinates 

of which are (t, r, θ et φ). For substituting z to them (in radial geodesics), let us calculate the 

Hubble’s constant, which in Friedmann-Lemaître formalism is :  H = a’(t)/a(t), where a(t) is the 

expansion of space factor and a’ its derivative in regard to time  t, in the Robertson-Walker. 

metrics, as follows: 

𝐻 =
𝑎′

𝑎
=

𝑑

𝑑𝑡
ln(

𝑎(𝑡)

𝑎0
) =

𝑑

𝑑𝑡
ln (

1

1 + 𝑧
) =  

−1

1 + 𝑧

𝑑𝑧

𝑑𝑡
 

 

With the value of H (for Ωk = 0):  

𝐻 = 𝐻0√( Ω𝑟𝑎𝑑(1 + 𝑧)4  + Ω𝑚(1 + 𝑧)3 + ΩΛ) 

One gets: 

𝑑𝑡

𝑑𝑧
=  

−(1 + 𝑧)−1

𝐻0√( Ω𝑟𝑎𝑑(1 + 𝑧)4  + Ω𝑚(1 + 𝑧)3 + ΩΛ)
 

 



This will allow to use z, in place, of t, in many equations. 
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