Why the formalism of modern physical theories looks so complex? (08/10/21)

One may wonder why the mathematical formalism describing modern theories of physics is so complex. Theories like those of strings, twistors, loop gravity, relativity, quantum mechanics and quantum field theory require an extremely high expertise in mathematics for understanding them, which is not the case of the “layman”.

However, the layman, like everyone and anything else on Earth are constrained by these laws. What a curious discrepancy! Is there a reason for this? Wouldn’t these laws be less effective if they were simpler? Should we attribute this to the intrinsic complexity of the nature itself, at least as it appears to us (the phenomena), or to the relative indigence of our mind and our senses, since this complexity is appreciated by them?  It would be like looking at an object through a kaleidoscope that would give scattered, distorted and blurry appearance of an image.

As part of the universe, we are fully constrained by these laws, including our mind and our senses, which are at work in our theorical search in physics and in the “physical” validations that can be made of it.

We may conceive that this imply structural limits on our knowledge: one tries to understand the constraints of the laws of the nature by a using a mean which is constrained by these same laws!

 It is even surprising that we can make such elaborate mathematical constructions which seem to reveal, at least, part of the mystery to us.

This is possibly linked to the phenomenon of consciousness, which is a kind of recursive process where the subject is considering himself as an object.

From these considerations, it seems reasonable to wonder, like Plato, if phenomena, which are shadows of a “perfect” reality, are not the source of this complexity.

As shadows, they provide incomplete and distorted very mysterious fragments of the puzzle representing a supposed “physical reality” and therefore the complex mathematical constructions of our theories would not necessarily be linked to the complexity of nature itself but to the fact that, what we get are degraded, scattered, distorted and strange fragments of this supposed reality.

The science, then, aim to try to provide us (apparently with some limited success) a better image of nature from these disparate and degraded fragments by processing them with a sophisticated formalism, according to what our mind considers as a reasonable coherence per the structure and knowledge of our brain .

We must still keep in mind that what we call the validation (in fact the non-rejection) of a theory can only be based on these fragments (phenomena) which are the only objects that are available to us.

Therefore, a reasonable theory would not predict the physical reality but its related fragments which are the only objects than we can check.

The process is quite tricky as scientist will look for laws which could give a coherent meaning to the production of these fragments, without necessarily being able to discover the image of the complete puzzle which may be simple but which is unknown!

Another question then arises: what kind of, a priori, paradigms to use for trying to make sense to the fragments that the scientist observes, and where do they come from?

For example, more and more symmetries are invoked which may be represented directly by geometric parameters or more formally by invariants under transformations (groups of symmetries) in physics (quantum field theory for example).

 It is true that when one looks to the nature in its ultimate entrenchments there is hardly anything left but relations, from which one can only extract symmetries!

H. Weyl, who was interested in the subject, suggests that this strong belief in symmetries is suggested by the observation of nature (mineral world, crystals, plants, animals, etc.) where symmetries are omnipresent.

From this, one is led to deduce that nature loves symmetries …..

Failing to describe nature in its full extension, the scientist may hope to improve his knowledge of nature by the diversification and the acquisition of new experimental means which will allow him to get other fragments and even all the fragments of the puzzle. But this does not mean that we will know how to assemble them for discovering the image that they represent!

 But, the fact that formalisms providing useful information on some phenomena exist,  their structure should result from a morphism between the structure of the laws of nature and the structure of formalism which predicts the phenomena that these laws of nature offer us. This shows the interest represented by these formalisms which must be interpreted in the context of what they produce: a key for giving sense to the set of fragments!

But, even assuming that we can obtain all the fragments, on the one hand this will not imply that we will know how to assemble them correctly to form an image and on the other hand, even if it were the case, that we will know how to interpret this image, undoubtedly blurred, of nature.

Some examples illustrating these words

Special relativity

We know the quarrel over the paternity of special relativity, Einstein having been called by some people a “copycat”! It is true that Lorentz, by the empirical transformations he established, Poincaré by the group of special relativity spacetime transformations that he identified, contributed to the genesis of this theory, which “was in the air ”at the time, following the problem posed by electromagnetism and the Morley-Michelson experiment. But it must be recognized that it was Einstein, in 1905, who gave it its foundation, giving it a physical meaning through the principle of “relativity”. All physical phenomena (except gravitation) obey the same laws in all inertial frames of reference which are differentiated only by a relative (constant) velocity. This principle allows, with the parameter of the velocity of light which is a constant in all the frames of reference, to constrain and derive the equations of special relativity. Indeed, in all these inertial frames (called galilean frames), we do not feel any constraint (the objects “float and we float”). Therefore, as in such galilean frames the phenomenology is the same, the physics must be the same. None are privileged. The constant experimental value of the celerity of light specifies a parameter of the theory. This situation led some people to say that, in 1905, we had all the pieces of the puzzle, but it was Einstein who discovered what they should represent and therefore how to put these pieces together.

General relativity

There was a small paternity dispute between Einstein and Hilbert which was friendly settled  by Hilbert acknowledgement that most of the analysis of the problem was due to Einstein, his contribution to the equation was simply the resolution of a mathematical problem (brilliantly, because he proposed a method much more general than that of Einstein by defining an action, the action of Hilbert, for general relativity). Einstein, who for his part was committed to transposing gravity into a relativistic form, had established his equation well before Hilbert, but in a less elegant way. The geometrical form of the theory of general relativity which is a theory of gravitation shows that we can describe, for example the universe, by its geometry which depends on what constitutes the universe. The great interest of this formulation is that it makes it possible to take into account a “non-linearity” which seems necessary: all the objects contribute to define the geometry of the universe to which, in turn, all these same objects will be coupled ( they will follow geodesics of the geometry of this universe). The circle is completed. Magnificent solution implementing this recursion where the object is also the subject. A model that could serve as a paradigm for phenomena like consciousness? Another beauty of the solution, the universe thus defined is “self-sufficient”, in other words, it does not need anything other than itself to exist and to be totally defined. It eludes the problem of creation and “reduces” it to that of its existence.

Quantum mechanics

Many scientists have contributed to this theory, so bizarre that its physical interpretation is still open to debate, even if the Copenhagen School’s interpretation is the reference. Faced with the strange nature, very different from what the world of classical physics and mechanics presented to us, that scientists were discovering, it is interesting to note the approach of W. Heisenberg who proposed to abandon all the concepts of classical mechanics and to consider only the “observables” (the phenomena) as elements of the theory. They were presented in matrices, associated with a formalism that allowed calculations to be made. On the other hand, Schrödinger was developing a solution with an equation of a wave function, allowing to define the state of a system. We know that this following formalism also included operators, associated with the physical quantities, which applied to the wave function allows to predict the probabilities of measurement results. These two formalisms turned out to be equivalent, which is interesting, because it shows that two fundamentally different approaches could just, as well, describe what we could know about nature.Author admin1179Posted on

Post navigation


Pourquoi une telle complexité pour décrire la physique ! (16/10/21)

Ce post est un extrait de la page : Espace-temps. Coordonnées : celles de type nul, conduisent à un nouveau paradigme. Géodésiques principales nulles. Quelle réalité physique révélée ? Mise à jour 10/08/21

On ne peut être que frappé par la complexité mathématique qu’il faut mettre en œuvre pour établir des théories qui tentent de rendre compte des phénomènes tels qu’on les observe. L’exemple donné dans les chapitres précédents n’en donne qu’un pâle reflet. Les théories comme celles des cordes, des twisteurs, de la gravitation à boucles et dans une moindre mesure de la relativité, de la mécanique quantique et de la théorie des champs quantiques demandent des connaissances très approfondies en mathématiques pour y comprendre quelque chose, ce qui n’est pas à la portée de ” l’homme de rue”. Pourtant l’homme de la rue, comme tous les autres, subit ces lois de manière naturelle.

Quelle disproportion flagrante ! On se demande pourquoi les lois de la nature que nous subissons nous paraissent aussi compliquées ! Y-a-t-il une raison à cela ? Ne seraient-elles pas aussi efficaces si elles étaient bien plus simples ? Doit-on attribuer cela à la complexité intrinsèque de la nature elle -même, du moins telle qu’elle nous apparaît (les phénomènes), ou à l’indigence relative de notre esprit et de nos sens, puisque cette complexité est appréciée par eux. Ce serait comme regarder un objet avec un très mauvais instrument qui en donnerait des images éclatées, déformées et floues.

Faisant partie de l’univers, nous sommes soumis à ces lois, y compris notre esprit et nos sens, ce sont elles qui sont à l’œuvre dans notre raisonnement et les validations “physiques” qu’on peut en faire. On conçoit que cela impose des limites structurelles à la connaissance : les lois cherchent à se comprendre elles -mêmes au moyen de ces mêmes lois !

On peut s’étonner qu’on puisse faire des constructions mathématiques aussi élaborées qui semblent nous révéler au moins une partie du mystère. C’est possiblement lié au phénomène de la conscience qui est une réflexion du sujet sur lui-même, pris alors comme objet. Mais on conçoit que ce procédé ne peut procurer qu’une information dégradée.

De ces considérations, il paraît raisonnable se demander, à l’instar de Platon, si les phénomènes, ombres d’une réalité “parfaite”, ne sont pas la source de cette complexité. Ils seraient des fragments probablement incomplets et distordus et, à ce titre, paraissant bien mystérieux, du puzzle représentant une supposée “réalité physique”.

Les constructions mathématiques complexes de nos théories, ne seraient donc pas forcément liées à la complexité de la nature elle-même mais au fait qu’on en dispose que de fragments épars et distordus. Elles visent alors à essayer de reconstituer (apparemment avec un certain succès tout de même) une meilleure image de la nature à partir de ces bribes disparates et dégradées en fonction de cohérences ou de lois supposées. Il faut tout de même garder à l’esprit que ce qu’on appelle la validation (en fait le non-rejet) d’une théorie ne peut s’appuyer que sur ces fragments (phénomènes) qui sont les seuls objets qui nous sont accessibles : la théorie doit prédire ces fragments. Le scientifique va rechercher des lois qui pourraient donner une signification cohérente à la production de ces fragments, sans forcément être capable de découvrir l’image du puzzle complet qui peut être simple (mais on ne la connaît pas)! Une autre question surgit alors : de quelles types de lois, a priori, pour tenter de donner un sens aux fragments qu’il observe, le scientifique dispose et quelle est leur source? Par exemple, on invoque de plus en plus les symétries qui peuvent se manifester par des aspects géométriques ou de façon plus formelle par des invariants par des transformations (groupes de symétries) dans la physique (théorie des champs quantiques par exemple). Il est vrai que quand on sonde la nature dans ses retranchements ultimes il ne reste guère que des relations dont on ne peut extraire que des symétries ! H. Weyl qui s’était intéressé au sujet suggère que nous puisons cet intérêt pour les symétries dans l’observation de la nature (monde minéral, cristaux, végétaux, animaux, ..) : elles sont omniprésentes.

De ceci on déduit que la nature aime la symétrie…

A défaut de décrire la nature dans sa plénitude, le scientifique peut, malgré tout, espérer améliorer sa connaissance de la nature par la diversification et l’acquisition de nouveaux moyens expérimentaux qui vont lui permettre de disposer d’autres fragments voire de toutes les pièces du puzzle, ce qui ne veut pas dire qu’on saura les assembler pour découvrir l’image qu’ils représentent !

Ceci induit que la structure du formalisme des moyens mathématiques mis en œuvre qui ont été couronnés de succès, nous informent sur les lois de la nature car on est fondé de supposer que ce succès résulte d’un morphisme entre la structure des lois de la nature et la structure du formalisme qui prédit correctement les phénomènes que ces lois de la nature nous proposent.

Cela montre l’intérêt que représentent ces formalismes qu’il faut interpréter dans le contexte de ce qu’ils produisent : l’empreinte de la clé adaptée à la serrure représentant la “réalité” physique !

Même à supposer qu’on puisse obtenir tous les fragments, d’une part cela n’impliquera pour autant qu’on saura les assembler correctement pour former une image et d’autre part, même si c’était le cas, qu’on saura bien interpréter cette image, sans doute brouillée, de la nature.

Quelques exemples illustrant ces propos

Relativité restreinte

On connaît la querelle en paternité de la relativité restreinte, Einstein ayant été qualifié par certains de vil copieur !

Il est vrai que Lorentz par les transformations empiriques qu’il a établies, Poincaré par le groupe des transformations de l’espace de la relativité restreinte qu’il a identifié, ont contribué à la genèse de cette théorie, qui “était dans l’air” à l’époque, suite au problème posé par l’électromagnétisme et l’expérience de Morley-Michelson.

Mais il faut reconnaître que c’est Einstein, en 1905, qui lui a donné son fondement en lui donnant un sens physique par le principe de “relativité”. Tous les phénomènes physiques (hormis la gravitation) obéissent aux mêmes lois dans tous les référentiels inertiels qui ne se différencient que par une vitesse (constante) relative. Ceci suffit, avec le paramètre de la vitesse de la lumière qui est une constante dans tous les référentiels [1] , à contraindre et dériver les équations de la relativité restreinte. En effet ces référentiels se caractérisent par le fait qu’on ne ressent aucune contrainte (les objets “flottent et nous flottons). Dans ces référentiels présentant la même phénoménologie, la physique doit être la même. Aucun n’est privilégié.

Cette situation a fait dire à certains qu’en 1905 on avait toutes les pièces du puzzle, mais que c’est Einstein qui a montré ce qu’elles devaient représenter et donc comment assembler ces pièces.

Relativité générale

Il y a eu une petite querelle en paternité entre Einstein et Hilbert qui s’est réglé à l’amiable, Hilbert reconnaissant que l’essentiel de l’analyse du problème était dû à Einstein, sa contribution sur l’équation était simplement la résolution d’un problème mathématique (avec brio, car il a proposé une méthode bien plus générale que celle d’Einstein en définissant une action, l’action d’Hilbert, pour la relativité générale). Einstein qui s’était de son côté attaché à transposer la gravitation sous une forme relativiste avait bien établi son équation avant Hilbert, mais de manière moins élégante.

La forme géométrique de la théorie de la relativité générale qui est une théorie de la gravitation montre qu’on peut décrire, par exemple l’univers, par sa géométrie qui dépend de ce qui constitue l’univers.

Le grand intérêt de cette formulation est qu’elle permet de prendre en compte une “non- linéarité” qui semble nécessaire : tous les objets contribuent à définir la géométrie de l’univers auquel, en retour, tous ces mêmes objets vont se coupler (ils vont suivre des géodésiques de la géométrie de cet univers). La boucle est bouclée.

Magnifique solution mettant en œuvre cette récursivité où l’objet (celui qui fait subir) est aussi le sujet (celui qui subit). Un modèle qui pourrait servir de paradigme pour des phénomènes comme celui la conscience ?

Autre beauté de la solution, l’univers ainsi défini est “auto-suffisant”, (l’espace-temps est défini par ce qu’on appelle une variété en mathématiques) autrement-dit, il n’a besoin de rien d’autre que lui-même pour exister et être totalement défini. Cela élude le problème d’une création et le “réduit” à celui d’une existence.

Mécanique quantique


De nombreux scientifiques ont contribué à cette théorie, tellement étrange que son interprétation physique est toujours sujette à débat, même si l’interprétation de l’école de Copenhague fait référence.

Face à la nature étrange, très différente de ce que nous présentait le monde de la physique et mécanique classique, que les scientifiques découvraient il est intéressant de noter l’approche de W. Heisenberg qui proposait d’abandonner tous les concepts de la mécanique classique et de ne considérer que les “observables” (les phénomènes) comme éléments de la théorie.

Elles étaient présentées dans des matrices, associées à un formalisme qui permettait de faire des calculs. D’un autre côté Schrödinger développait une solution avec une équation d’une fonction d’onde, permettant de définir l’état d’un système. On connaît la suite, le formalisme définit aussi des opérateurs associés aux grandeurs physiques (observables), qui appliqués à la fonction d’onde permettait de prédire des probabilités de résultats des mesures des observables.

Le formalisme de Heisenberg et celui de Schrödinger se sont révélés équivalents, ce qui est intéressant, car cela atteste que deux approches fondamentalement différentes pouvaient aussi bien décrire ce qu’on pouvait connaître de la nature.

Expérience et information

Une expérience apporte, via des “mesures” mettant en jeu généralement des instruments qui peuvent être sophistiqués , une information sur l’état d’un système. En mécanique classique ceci n’a pas soulevé de débat philosophique notable sur le rôle de l’esprit de l’expérimentateur.

En mécanique quantique il en est tout autre. La mesure perturbe fondamentalement le système et l’information acquise va réduire les degrés de liberté du système au point que d’indéterminé il va être dans un état connu.

Le mécanisme qui conduit à cela a fait l’objet de différentes interprétations, mais, par exemple dans le problème des 2 fentes de Young, le fait de savoir (par un détecteur sur une fente) par quelle fente un photon est passé va modifier, même si le détecteur ne détecte rien (au quel cas on suppose qu’il est passé par l’autre fente) le phénomène observé.

Considérons un système à étudier. Il contient une information ? Considérons le système constitué de l’expérimentateur muni de son appareillage. Il contient une information dans laquelle certains (Wigner) vont jusqu’à inclure l’information de l’esprit de l’expérimentateur . Ces deux systèmes vont entrer en interaction lors de la mesure. Il sont considérés généralement comme deux systèmes indépendants qui reprennent leur “vie” propre après l’interaction.

En mécanique quantique il semblerait plus adéquat d’évaluer et de considérer l’information globale associée au système à étudier et à l’expérimentateur comme faisant partie d’un même système!

Un formalisme, à développer ,qui pourrait prendre en compte cela permettrait peut-être d’évacuer certains aspects très perturbants de la théorie…

[1] Ce point structurellement très important, cette limite étant impliquée dans la causalité, résultant du principe de relativité qui révèle un invariant de vitesse mais n’en spécifie pas la valeur. La valeur de de cette constante est une donnée expérimentale. voir: https://astromontgeron.fr/SR-Penrose.pdf